AD-A109 Ta8 TEXAS INSTRUMENTS INC LEWISVILLE EQUIPMENT GROUP F/6 972
ADA INTEGRATED ENVIRONMENT III.(U)
DEC 81 F30602-BB-C-0293

UNCLASSIFIED RADC-TR=81-361

]

T

== w & 2.2

== ., li==

1 E a 2o

T
J

m

4
MICROCOPY RESOLUTION TEST CHART

2t D o SR N M A ARSI I = ¥ Wrw A0 L+ ST I W L . it S 3 i & B I

' g, - . . . B T Sunnem e S B o . " e o o ot

PHOTOGRAPH THIS SHEET

_TW‘IJL‘UThs“VumM“‘S Inc., INVENTORY

Lewisville TX Gguipmedt Cv;f -ACSL

ADA Inteqated Envionmest T
Dee. &1

DOCUMENT IDENTIFICATION

t F30coa-soc-a293 Reme TR-/526/

AMA109748

DISTRIBUTION STATEMENT A
" Approved for public release
Distribution Unlimited

DISTRIBUTION STATEMENT

ACCESSION FOR ‘
NTIS GRAAI
DTIC TAB DTIC
UNANNOUNCED d ELECTE
JUSTIFICATION

JAN 19 1982 *
BY D
DISTRIBUTION /
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

DISTRIBUTION STAMP

: 82 01 12 €eS

- DATE RECEIVED IN DTIC
' PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

y
g oTIC T 708 DOCUMENT PROCESSING SHEET

i

AMATLH748

RADC-TR-81-361
Interim Report
December 1981

ADA INTEGRATED ENVIRONMENT Ili

Texas Instruments incorporated

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

T

B2 <. 10 RN e ol S 1 < 3 3o P AL IS L+ 5N 9 1 P 5l 4 = a0 Tk B,

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign natioms.

RADC-TR-81-361 has been reviewed and is approved for publication.

APPROVED: ' ‘h“jt’iJ'AﬁkszJ

ELIZABETH S. KEAN
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER:% / %4,

JOHN P, HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T, REPORT NUMBER 2. GOVT ACCESSION NO.
RADC-TR-81-361

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitie)

ADA INTEGRATED ENVIRONMENT III

S. TYRPE OF REPORT & PERIOD COVERED

Interim Report
15 Sep 80 - 15 Mar 81

6. PERFORMING 0G. REPORT NUMBER

N/A

7. AUTHOR(s)

9. CONTRACT OR EIANT NUMBENR(3)

F30602-80-C-0293

9. PERFORMING ORGANIZATION NAME ANO AODQI.SS

3 Texas Instrumenfs IncoYrporated

5 Equipment Group-ACSL, P O Box 405, M.S. 3407
Lewisville TX 75067

REA & WORK UNIT NUMBE

62204F/33126F/62702F
55811919

11. CONTROLLING OFFICE NAME AND ADORESS

Rome Air Development Center (COES)
Griffiss AFB NY 13441

12. REPORYT DATE

December 1981

13. NUMBER OF PAGES

65

T3, MONITORING AGENCY NAME & AQORESS(il different from Controiling Olfice)

Same

18, SECURITY CLASS. (of thia report)

UNCLASSIFIED

%e. O ¢Cé.Ass|'ncnﬂou7 DOWNGRADBING |

N/A®

S e——————
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

Same

17. OISTRIBUTION STATEMENT (of the abstract entered in Black 20, it different from Report)

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Elizabeth S. Kean (COES)

19. KEY WOROS (Contintue on reverse side if necessary and identify by block number)

Ada MAPSE AIE

Compiler Kernel Integrated environment
Database Debugger Editor

KAPSE APSE

20. ABSTRACT (Continue on reverse side if necesssry snd identily by biock aumber)

The Ada Integrated Environment (AIE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AIR includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programming Support Environment
(APSE). This report describes the rationale of the design for a minimal
APSE, called a MAPSE. The MAPSE is the foundation upon which an AYSE is

DD 158" 1473 eoition or 1 nov es 13 ousoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

e ————————————————————
10. PROGRAM ELEMENT. PROJ!CT TASK

b e e kO ot ot s OO Ml rnd, Ve e £ it e

UNCLASSIFIED
SECURTY CLASSIFICATION OF THIS PAGE(Whan Dats Entersy)

built and will provide comprehensive support throughout the design,
development and maintenance of Ada software. The MAPSE tools described
in this report include an Ada compiler, linker/loader, debugger, editor,
and configuration management tools. The kernel (KAPSE) will provide the
interfaces (user, host, tool), database support, and facilities for :
executing Ada programs (runtime support system).

UNCLASSIFIED

cre S ICATION OF Twt SAGE/When Dare Entered)

sSECum Ty =

[““‘ Dtalaalhe s Rl S d R gl 1Y . ms Sy b

Technical Report

TABLE of CONTENTS

Paragraph Title

el e el)
PN RNN N
NS WN =

NNNDRNNNNNDNNDNDNDNN

W W w

00 N OV LN B W N 1t o i b b b

WV WN -

AW

SECTION 1 INTRODUCTION

Introduction

A Model of the Software Development Process
Database Management Principles .
Control of Software Tools
Data Structure Interfaces
Command Language Principles
Definition of Program Structures
Common Use of Software Products

SECTION 2 ADA SOFTWARE ENVIRONMENT

Program Segmentation
Background
Shared Host System Segments .
Dynamic Binding . . e e
Address Space Multlplexzng e e
Debugging . . e e
Optimized Llnkages e e e
Parameter Passing .
Input / Output Conflgurablllty
Inter-Program Communication .
Foreground/Background Execution .
Structure of Executive Program
VM/370 Implementation
Virtual Machines

SECTION 3 COMMAND LANGUAGE

Command Language Design Goals

Command Language Functions

Command Language Programmabxllty

Command Language Convenience
An Ada-like Command Language

TABLE of CONTENTS

Page

= e et b b et
i]
RV L L WN

NRNNRNNDNNNDNDNDNNNNN
T T T T e Y T T U T T
ToONNOOONVMPPWWWH

!

WWwiwww,
]
WRNNN -

v Ada Integrated Environment

e e e Y - A

Technical Report TABLE of CONTENTS

SECTION 4 ADA DATABASE SUBSYSTEM

4.1 Database Design Goals 4-1
4.1.1 General Requirements 4-1
4.1.2 Language Requirements 4-2
4.1.3 Environment Requirements 4-2
4.1.4 Previous Work . . 4-3
4.2 Organization of an Ada Database Subsystem . 4-3
4.2.1 Logical Organization 4-4
4.2.2 Physical Organization . . . 4-5
4.3 ° Operation of the Ada Database Subsystem . 4-6
4.3.1 Creation and Deletion of Database Objects 4-6
-4.3.2 Access Control 4-6
4.3.3 Ada Program Interfaces 4-7
4.3.4 Command Language Interfaces 4-8
4.3.5 Compiler Interfaces 4-9
4.4 Conclusions and Summary 4-10

SECTION 5 ADA LANGUAGE PROCESSORS

[CRCEVCEC RV RV EC NV RV, N NV 1
]
SNOASUVME D WWN

Compiler Design Goals
Compiler Structure

.1 Description of the compller

.2 Organization of the Code Generator
Selection of a Recursive Descent Parser .
Selection of an Intermediate Representation .
Selection of the Intermediate Language
Processing of Generics .
Expansion of Inline Subprograms

.1 Expansion of Inline Functions

Bootstrapping the Compiler

Lihununbnubunonnn o
OSSNSO WNNN =

SECTION 6 TEXT EDITOR

6.1 Text Editor 6-1
6.1.1 Terminal Dependen01es 6-1
6.1t2 Editor Commands 6-1

APPENDIX A GLOSSARY

v Ada Integrated Environment

Lo e M T Sh A A s, i ety o AL S8 e B K DN YA M e 1Pt i ! A e i e it ST dt

T

A T e e 4 g e e e

Technical Report TABLE of CONTENTS

APPENDIX B REFERENCES

1 " Program Definition Documents
.2 Military Specifications and Standards
3 Other References e e e e e

(o~ BN
!'.UD"U’
-

v Ada Integrated Environment

i v

Technical Report INTRODUCTION

SECTION 1
INTRODUCTION

1.1 Introduction

This Technical Report supplements the Ada Integrated Environment System
Specification and Computer Program Development Specifications. It provides
some general design philosophies and criteria, discusses key design issues,
and highlights the design decisions made for wvarious components of the

system,
The concept of ‘“programming in the large”, or system construction
programming, was selected as a unifying theme for the system design . This

concept emphasizes the fact that software design and development activities
take place on at least two levels and that different entities and software
tools are important on each level. Some of the differences between levels
are summarized in the following table.

Lower level Higher level
Algorithms Program units
Data structures Database objects
File contents File attributes
Programming language Command language
Text editing Program binding
Tools that work with the lower-level entities are relatively well
understood. in this design, additional emphasis has been placed on
understanding the higher level entities and providing tools that work with
them, especially in the areas of configurations, versions, and libraries.
L In the same spirit, the functionality of software tools has been carefully
1 examined to separate the low-level functions from higher-level ones, thereby

improving control of the software construction process.

T Certain other system-wide concerns must also influence the design of the Ada

: Integrated Environment. The issues of versatility (rehosting and
retargeting), durability (low maintenance cost), and performance are
critical to all APSE tools and to the software they produce.

b

E -
i Texas Instruments 1-1 Ada Integrated Environment

Technical Report INTRODUCTION

1.2 A Model of the Software Development Process

The."programming in the large” view of the software development process
considers it to be a sequence of integrating and transforming steps that

progresses to produce a complete program.
At each level of integration, constituent units are brought together by
components of the toolset.

* A text editor is an example of a tool used to form program units
from smaller constituent parts. The editing process may include
direct text entry, deletion or changes by an interactive user or
may merge text from several source files to create the desired
program unit.

* A program binder (or linkage editor) is an example of a tool used
to form a complete program from specified constituent program
units. The binding process may merge program units from several

libraries to create the desired program.

Various transformations may be performed on the constituent units of

begins with the simplest lexical units of a programming language and

software tool to form a larger entity. These integrating tools are primary

a

software product at any level of integration. Transformation of a program

or program unit changes its representation without changing its meaning.

* A translator is an example of a tool used to transform the
declarations and statements of a program unit from the human-
written source text of a programming language to an intermediate
representation more suitable for analysis, optimization and other
processing.

* An optimizer is an example of a tool used to analyze and transform
a program unit to improve its performance or its use of computing
resources.

* A code generator is an example of a tool used to transform a

program unit from an intermediate representation to a form
compatible with the instruction set architecture of a target
machine. This tool usually performs some additional optimizations.

* A composite transformation tool consisting of a translator,
optimizers, and a code generator is usually called a compiler.

Static and dynamic analysis tools may be applied to the constituent units
a software product at any level of integration.

* A cross reference analvzer is an example of a static analysis tool
that locates the de* ition of each symbol in a program unit and
identifies the , _ranm tatements that refer to the symbol.

Texas Instruments 1-2 Ada Integrated Environment

of

Technical Report ‘ INTRODUCTION

* A source language level debugger is an example of a dynamic
analysis tool that maps the memory image of an executing Ada
program to the source program text and data definitions, allowing a
user to examine or modify data values and control program
execution. Configuration management tools attempt to record and
control the changes made to constituent units of a software product
so that (re)construction of a product is consistently done from
known, compatible parts. These tools use a database that provides
data structures and facilities for the storage and retrieval of
information, generated by MAPSE tools, concerning the constituent
units of a software product.

The Ada language provides several features that support separate compilation
of program units. As a result, construction of a correct context for
compilation of a program unit may require access to other program units in
the database. The relationships between program units are defined by the
static lexical (nested) structure of the program.

The several steps of the compilation process produce intermediate results
which must be stored. Listings and data for debuggers or other analysis
tools may also be generated, and these must be related to the original
source text.

A special file is necessary to specify the structure of a program, name its
constituent program units, and provide the mapping from internal program
unit names to the external names of database objects. This file is called a
library file. It also contains information on the compilation status of
each program unit and the names of derived files. The library file is thus
a key element in Ada software configuration management.

An integrated software development process must begin with specification of
a program structure, which then controls all subsequent construction,
transformation and integration of constituent wunits to form the final
program. Program structure information is stored in the library file.

Each of the software tools described in this model obtains its processing
instructions from a control file, which may be an interactive user's
keyboard in appropriate cases. One or more program units may be processed
as input. The processing context for each program unit is determined by

reference to the library file. Upon completion of processing, the library
file may be wupdated to show appropriate results. The output -- an
integrated or transformed program unit -- is stored in the database with

appropriate attribute values and relations set to indicate its position in
the set of derived program products.

1.2.1 Database Management Principles
Ind.iviglual database objects must be managed at several levels. Standard
facilities must be provided to identify and manipulate groups of database

objects for version control, configuration definition, program libraries,
and archiving.

Texas Instruments 1-3 Ada Integrated Environment

=

Technical Report INTRODUCTION

1. At the lowest level are the contents of a database object. This
information is created by a running program; it requires storage.
The internal strucuture of a database object is defined by the
programs that create and use it.

2. At the next level are the attributes of a database object. This
information about the object is obtained from various sources. It
is usually kept in a separate data structure, not with the object.

3 3. At the highest level are the relations between database objects.
TS This information linking two or more objects together is user-
: defined and represents possible static or dynamic interactions
between the contents of database objects as they are ceated, used,
changed and destroyed.

1.2.2 Control of Software Tools

Each APSE software tool must have a well-defined control file for input.
The functionality of each tool should be clearly defined; addition of
features outside the tool's designed function should be limited or
eliminated.

1. The control fife contains the commands that specify the
processing to be performed on an input file for a particular
invocation of a software tool.

2. Generally, commands to the software tool should not be
interspersed with input data. Separation of the two allows
additional flexibility and allows changes of commands or options
without changing the input data.

3. Use of features such as the INCLUDE pragma in a compiler should
be discouraged. In this case, a transformation tool is forced to
serve as an integrating tool; a command is embedded in the input
text file, and configuration management may be compromised.

1.2.3 Data Structure Interfaces

The software interfaces to major system data structures, such as
directories, must follow standardized design rules. All APSE tools and user
programs must use the standard interfaces.

1. The Ilowest level interface maintains and protects the data
structure. It controls all access, and it stores and retrieves
records on demand. User programs have no direct access to this
level.

2. The next level provides a set of primitive functions to handle

Texas Instruments 1-4 Ada Integrated Environment

T SN g et o

Technical Report INTRODUCTION

data inquiries and storage requests. Routines at this level can
locate a requested record in the data structure and can insert or
extract detailed information in those records in response to user
requests. These are generally the routines visible to an Ada
program through standard interface packages.

3. APSE components and wuser programs at higher levels use the
primitive functions furnished by the APSE to construct subprograms
that perform more complex operations. Some of the most commonly
used subprograms are integrated into standard packages and
libraries for all users.

GV A o2 u et e RN

1.2.4 Command Language Principles

Command languages should provide much of the generality of programming
languages, but must also provide cconvenient access to special functions.
All command language designs should anticipate mixed interactive and non-
interactive use.

1. The decision to design all APSE tools to wuse a control file
implies a collection of "command languages” in which the contents
of these files are written. Well known examples are text editor
commands, debugger commands, compiler pragmas, and link editor
control files.

2. Command languages are used to invoke and control processes,
select options, and manipulate whole data objects. They are
typically concerned with constants and literals -- the names of
objects, processes and parameters.

3. Programming languages are used for algorithmic manipulation of
simple data objects and are typically concerned with strongly
typed variables, expressions, and the internal detail of
structured data objects.

. 4. The concepts of statements, control structures, and subprograms
are significant and similar in both kinds of languages. The use
of parallel and pipelined processing is more common in command

languages.
5. |Immediate interaction with a human user is important in a command
language. Programming languages, which tend to be used non-

interactively, must emphasize readability.

6. The specialized nature of a command language leads to a large

vocabulary of specific keywords and keyword-specific command
4 syntax. Programming languages use a smaller vocabulary of very
general keywords and a generalized, limited syntax.

g =i

Texas Instruments 1-5 Ada Integrated Environment

Technical Report INTRODUCTION

1.2.5 Definition of Program Structures

Tools must be provided to record the static (lexical) and dynamic (run-time)
structure of an Ada program, name its constituent program units, and provide
the mappings from internal program unit names to the internal and external

E names of database objects.

1. The recorded structure definition is called a Ilibrary file. it
is a key element in Ada software configuration management. It
should be used to specify the processing context of each Ada
program unit through all construction, transformation and

E’ integration steps.

i

b 2. The derivation of each program unit, its compilation status, the
3 names of derived files, and other attributes and relations may be
3 kept in the general database or in the library file.

3. Each software tool involved in the processing of an Ada program
unit is responsible for initializing or updating the values of the
attributes and relations that are associated with the database
objects it creates or modifies.

1.2.6 Common Use of Software Products

The by-products of the transformation and integration tools that operate on
Ada program units must be designed for general use by other software tools.

1. Certain compilation by-products, such as listings and symbol
tables, are used by analysis tools such as source language level
debuggers or symbolic cross reference analyzers.

2. Intermediate representations of program units may be subjected to
special analysis or used to produce filtered source texts.

3. The same design principles that apply to interfaces with major
system data structures must be applied to the database objects
produced by Ada language processing tools.

Texas Instruments 1-6 Ada Integrated Environment

= - ,________________.‘__J

A o R A it e —
- - Py o . ~ bt

WP —

Technical Report ADA SOFTWARE ENVIRONMENT

SECTION 2
ADA SOFTWARE ENVIRONMENT

2.1 Program Segmentation

"KAPSE/MAPSE software shall be designed to be modular and reusable.
Software performing a single function required (or potentially required) by
more than one system component shall be designed to be reusable to the
maximum extent possible.” [RADCS80].

Support of this requirement was the fundamental design goal for the Ada
Software Environment in general and its program segmentation technique in
particular. The next subsection provides the background for the ASE
segmentation; subsequent subsections describe its capabilities.

2.1.1 Background

The program structure and separate compilation facilities of Ada provide the
basic tools with which to produce modular software. The degree to which
software can be reused depends on implementation decisions within the Ada
Software Environment. The modes for sharing software are:

1. Source text -- The Ada program library permits sharing of source
text since a program can be partitioned into units that are
separately comgilable. The source text for a unit can be used in
several programs by copying that text into the corresponding
program libraries or (preferably) by permitting indirect
references in a program library to units in other libraries. This
mode shares the algorithmic content of software but not the
expense of compilation. '

2. Object modules -- Conventional programming systems share
software through libraries of object modules. An object module is
produced by the code generation phase of a compiler and contains
the machine instructions into which source text is translated.
References to external items are symbolic and not resolved until
the object modules for a program are bound to form a memory image.
Object code can be shared in the Ada environment if program
libraries support references to external units.

3. Memory image -- The object modules for a program are bound
together to remove symbolic inter-module references to form a
memory image that can be loaded as an entity. For an image
(containing reentrant code) to be shared among users, constraints
must be placed on the relocatable quantities it contains. It must

Texas Instruments 2-1 Ada Integrated Environment

M

......

Technical Report ADA SOFTWARE ENVIRONMENT

be possible for each address or relative displacement to have the
same value in each logical address space in which the image is
used. For most architectures, an image can be shared only if it
is a complete program or is loaded at a dedicated location in each

user's address space. The former case is generally acceptable
since a program can be replaced by a new version without affecting
the user's interface. The latter case leads to system-wide
configuration problems: a change to a piece of shared code causes
obsolescence of all bound programs that reference it (unless

references are indirect through some type of system service vector
that decouples a service from the address of the code that
provides it, in which case there must be system-wide agreement on
allocation of entries in this vector.)

4. Constrained position-independent image -- Sharing can be made
less difficult if inter-module references are made through a
program-local table that contains the address of each module. If

each module contains position-independent code and all external
references are made via an index into this table, a module need
not be loaded at the same logical address in all programs that
share it. The constaint on sharing is that each shared module
have the same index. (This is functionally equivalent to having a
system service vector except a module need not be loaded at the
same logical address in all programs.)

5. Unconstrained position-independent image -- The technique used
in the Ada Software Environment supports unrestricted sharing of
modules in memory image form. A collection of object modules can
be bound into a memory image called a segment. Each segment has

an associated table through which all external references are
made. Since each table is segment-local, a module need not be
referenced with the same index in all segments. Sharing of a

segment requires only that a program-local of its external
reference table be built and that any external references to
modules in the segment be resolved.

The form of segmentation that is implemented in the Ada Software Environment
is @a generalization of that used by the Hewlett-Packard HP3000 Series ||
computer ([HP 77]). The program binder supports the grouping of a
collection of object modules into a segment that contains four components:
constant section dictionary, constant section, code section dictionary, and
code section. The dictionaries provide a uniform method for access to both
internal and external objects. An internal entry is represented by its
displacement from the corresponding section. An external entry s
represented by the number of the segment in which it resides and its index
into that segment's dictionary. Each program has a segment table that
contains the addresses of the four components of each segment. The constant
section contains (read-only) constants that are referenced in each
subprogram in the segment; a constant that is declared in subprogram can be
accessed from a nested subprogram. The code section contains position-
independent (reentrant) code for for each subprogram.

Texas Instruments 2-2 Ada Integrated Environment

Technical Report ADA SOFTWARE ENVIRONMENT

2.1.2 Shared Host System Segments

The inter-segment reference tables described above permit segments to be
shared without restriction on a host system. The same segment can be loaded
at different logical addresses in different programs.

2.1.3 Dynamic Binding

Each segment contains a symbolic form of its code section dictionary that
identifies the internal subprograms that are defined in the segment and the
external subprograms that are referenced. With this information, a loader
. can construct the inter-segment reference tables for a program at execution
E time. This capability can also be used to link a partially bound program to
: i resident segments.

i At

On a host system, dynamic binding can be performed as the disk-resident
versions of segments are brought into memory during initial program load.
On an embedded system, the analogue of this type of binding is construction
of inter-segment reference tables at system power-up. It is feasible for
the embedded system to contain an initialization routine that builds the
tables based on a list of addresses at which segments may occur, typically
, in read-only memory (ROM). Usage of this technique means a new version of a
! software component can be installed by inserting a new ROM and the ROMs that
. contain references to this component are not made obsolete.

A variation of power-up binding is patching defective software that is in
ROM. By controlling the order in which segments are examined during
binding, it is possible to have the dynamic binder replace one subprogram of
a segment by changing its internal entry in that segments code section
dictionary into an external reference to a segment that contains the
corrected version of the subprogram. The host system analogue of this
capability is testing a new version of a subprogram that is in a shared
system segment.

Another variation of power-up binding is to use dynamic binding to down-load
partial programs into embedded systems.

2.1.4 Address Space Multiplexing

Segmentation provides the interface that makes possible execution of a
program in physical address space that is not large enough to hold all of
the code for that program. For this to be practical, it is essential that
an object module be partitioned into constant and code sections since the
data in this sections have different access characteristics. In particular,
Ada permits a structured constant (e.g., a string whose value is known at
compile-time) to be passed by reference from the subprogram in which it is
declared to a series of unrelated subprograms. Thus, there is not
necessarily the locality of references for constants that there is for code.

On a host system, address multiplexing corresponds to overlaying and demand
loading of segments. In both cases, the segment reference tables are

Texas Instruments 2-3 Ada Integrated Environment

o T T TR TR TR TR IR T T M Teel T TS T TR

Technical Report ADA SOFTWARE ENVIRONMENT

augmented to include information about the disk and memory addresses at
which an overlay or segment resides. When overlaying is employed, the
program is bound with the relative positions of overlays specified. With
demand segmentation, the ASE manages a region of memory into which segments
are loaded as they are referenced. The linkage handler can examine the
segment tables to determine ivhen disk transfers must be made. Since all
inter-subprogram transfers are made through the handler, there are no
restrictions on recursive calls or calls between subprograms in parallel
overlays. (inter-overlay reference data can be wused to automatically
promote constant sections to ensure constants are resident whenever they
might be referenced.)

On an embedded system, address multiplexing corresonds to automatic

manipulation of memory mapping registers or ROM enablement Ilines. For
example, the 1750A supports a 16-bit logical address space and a 20-bit
physical address space. There are dual logical address space for both

instructions and data; for each type of access, there are sixteen mapping
register that map 4096-word blocks of logical addresses into physical
address space. A special version of the ASE linkage handle can be used to
adjust mapping registers at subprogram call and return in such a manner that
all instructions for a program are accessed through one or more 4096-word
windows in logical address space. On simpler architectures that do not have
mapping register, the linkage handler can manipulate ROM enablement lines to
select code segments.

2.1.5 Debugging

The ASE linkage handier provides a convenient point to probe programs for
dynamic debugging at the subprogram level. Since all calls are made through
the handler, the segment tables can be extended to include flags that
indicate if a given subprogram should be traced or have performance data
gathered.

2.1.6 Optimized Linkages

The overhead to provide the features listed above is generally the expense
of one level of indirection of intra-segment calls and two levels for inter-

segment calls. Compared to the average number of instructions that are
executed per subprogram, this s not excessive. For time-critical
application, it is possible to use binder options and/or different versions
of the linkage handler to return to more conventional linkages. One
optimization is to use self-relative displacements for intra-segment
reference to avoid access to the linkage tables. |If a target machine has a
16-bit logical address space, logical addresses can be used instead of a
table index as the parameter of a call; if the address space is larger, the

parameter can be the index into a single table of addresses.

Texas Instruments 2-4 Ada Integrated Environment

‘e o o~ " i r‘
mﬂfm—~ o .
E-.

Technical Report ADA SOFTWARE ENVIRONMENT
2.2 Parameter Passing
Compilers for Algol-like languages usually pass parameters by “pushing"
values on the same stack that is used for storage allocation; an actual
parameter becomes an initialized object in the callee's stack frame. This
approach is particularly appealing if the instruction set architecture has
addressing modes that support auto-incrementing and/or auto-decrementing of

, addresses held in registers. For machines such as the Perkin-Elmer 8/32,

p IBM 370, and 1750A that do not have stack instructions, the stack model for

parameter passing is not more space-efficient than passing the address of a
parameter list that the caller builds in its stack frame. In the context of
the Ada optimizing compiler, use of a parameter list is advantageous:

1 1. If no attempt is made to optimize parameter passing, the two
approaches are essentially equivalent. The same amount of stack
space is required since a single parameter list can be wused that
contains maximum storage required for any of the calls in the
subprogram. The code size is essentially the same since each
parameter must be passed using a6 base/displacement addressing
mode.

2. The parameter list is a structure in the stack frame of the
caller that is subject to the full power of the compiler's
optimization phase:

a. if all parameters of a call are IN and are known at
compilation time, the parameter list can be allocated in the
constant section and passed by loading its address in the
parameter list register.

b. If some of the parameters of a subprogram are invariant
inside a compound statement, the initialization of those
parameters can be moved out of the statement. In
particular, a parameter list can often be partially
constructed before a looping construct is entered.

3. Use of parameter list provides the potential for dynamic

- expansion of the stack region:

a. Since no reference is made to the callee's stack frame

before the call occurs, no data need be relocated if the
linkage handler must acquire more stack space from the
storage manager.

b. Since the caller's registers are saved in its stack frame,
the linkage handler has free registers with which to acquire
memory.

Texas Instruments 2-5 Ada Integrated Environment

i e i 5y

Technical Report ADA SOFTWARE ENVIRONMENT

2.3 Input / Output Configurability

The input/output component of the Ada Software Environment uses the
subprogram SET_NAME to establish a correspondence between an internal file
and the external file or device that it represents. Since the name is a
string that can be calculated during program execution, some technique must
be found to connect a file dynamically to the device handler that performs
its input/output. It is desirable that new devices be added in a modular
manner: it should not be necessary to replace existing load modules or to
recompile an 1/0 dispatch routine that uses a large CASE statement to _select
device service routines.

I/0 configurability is provided in ASE through packages called virtual
devices. The visible part of the specification of each virtual device
package is the same: it contains declarations for subprograms that provide
the standard services of the KAPSE virtual 1/0O interface. The body part of
each package contains the implementation of these services. A file name is
processed by presenting it to each virtual device package. If the file name
is recognized, the virtual device package returns a service vector
containing the address of each subprogram that provides a KAPSE virtual 1/0
service. A user requests device-independent services from a virtual device
through interface subprograms that use the device service vector to make a
parameterized transfer to the proper subprogram.

2.4 Inter-Program Communication

The Ada Software Environment supports inter-program communication through a
virtual device that uses host system message passing primitives to transfer

data. This capability has been used in other systems (e.g., Unix
([UNIX78A]) to build complex processors from component programs by using the
output of one program as the input of the next. When inter-program
communication used to simulate a virtual terminal, a very useful form of
software reusability results. For example, the functions of the Ilibrary
utility can be provided to a program through a package that dynamically
invokes the library utility program. Service requests are made through

calls to subprograms in the package and are converted into simulated
terminal inputs that drive the utility.

2.5 Foreground/Background Execution

Many current operating systems f{e.g., Unix) distinguish between foreground
and background service. A user typically executes non-interactive programs
in the background while an interactive task (e.g., editing) is performed
concurrently in the foreground.

The Ada Software Environment provides the user the a more general capability

to control dynamically which programs are connected to his terminal. Having
multiple windows per terminal permits several programs to be monitored
concurrently. If a program takes longer to execute than had been estimated

Texas Instruments 2-6 Ada Integrated Environment

Technical Report ADA SOFTWARE ENVIRONMENT

initially, it can be disconnected from the terminal and resumed later
without loss of any data.

2.6 Structure of Executive Program

The executive program has been designed to make extensive use of the tasking
features of Ada, The programs under its control are represented by
instances of the command languaas interpreter task within the executive
program. Since these tasks share the same address space, the ensemble of
programs associated with a wuser can be controlled through shared data
structures. Asynchronous 1/0 intera:ions o.cur through interrupts.

2.7 VM/370 Impletaentation

Under VM/370, the Ada Softwcre Environment will be implemented on what
appears to be a bare machine. An operating system will be produced that
supports multiple concurrent programs, each of which has its own virtual
address space. All device interfaces must be supplied. Moreover, this
software must be implemented in subsets so testing of other components of
the Ada Integrated Environment can begin prior to completion of the ASE.

The following development strategy will be used to minimize the risk in
providing the ASE:

1. The KAPSE virtual interface will be designed to be implementable
under both 0S/32 (on the Perkin-Elmer 8/32) and CMS (on the
iBM 370). Under CMS, 0S/370 compatible service calls ([IBM79L]})

will be wused (as much as possible) since they are typical of the
services provided by host systems and their usage will make more
likey the identification of a transportability interface.

(Although the full AIE may not be supportable under 0$/370,
consideration of 0S/370 when designing the ASE should make it
possible to transport individual programs that do not require the
full multi-user, multi-program capability of the AIE.)

2. The first phase of developement will provide execution of a
single program containing a single task. This level of support
corresponds to the environment of the bootstrap compiler; it s
sufficient to test algorithms that do not involve concurrent
execution. The primary features to be verified are the Ada
execution environment and the high-level /O interface. Since the
Ada optimizing compiler, database, and program binder will not be
available when this testing is performed, host system object
formats and link editors will be used. At the conclusion of this
phase, an adequate environment will be available for the initial
development and testing of other components of the Ada Integrated
Environment.

3. The second phase of development will support execution of a

Texas Instruments 2-7 Ada Integrated Environment

cukhiinan,

Technical Report ADA SOFTWARE ENVIRONMENT

single program with multiple tasks. The ASE will be upgraded to
include task management, the component that supports simulated
concurrent execution within a single program. This component
involves complex, time-dependent algorithms that must be tested
extensively.

4. The third phase of development will support the execution of
multiple programs in a single virtual address space. This phase
corresponds to the addition of the program management component,
whose implementation depends on the task management component that
was verified in the previous phase. The primary features that
must be tested are:

a. dynamic program invocation

b. executive program:

* terminal device controllers

* virtual terminal interface

* executive command language

* command language interpreter

* inter-program communication. At the conclusion of
this phase, an adequate environment will be
available for the initial integration testing of
the components of the Ada Integrated Environment.

The programs associated with a wuser are executing
under CMS in a single address space (i.e., no
virtual memory management is provided by the ASE);
concurrent execution of programs is supported
through time-slicing.

5. The last phase of development will support the execution of
multiple programs, each having its own virtual address space. The
program management component will be extended to become a virtual
memory operating system that supports concurrent execution of

multiple programs within a user's virtual machine. Device
handlers will be provided that are similar to those in CMS. The
desigh of this system will be coordinated with the hardware

"assists" that are provided in the |BM 370 firmware.

2.8 Virtual Machines

The VM/370 version of the Ada Software Environment uses a distinct virtual
machine for each user. An alternative approach is to use a single virtual
machine under which all users execute. A design based on multiple virtual
machines has the following advantages:

Texas Instruments 2-8 Ada Integrated Environment

Technical Report ADA SOFTWARE ENVIRONMENT

1. The system is more secure if all interactions among users are
} restricted to inter-machine communication primitives.

2. The system is more robust since damage can be isolated within the
environment of a single user.

: : 3. Resource management management by the ASE is less critical:

a. If most users at an installation are using the AIE, the
utilization of the host processor will depend primarily on
how well the ASE performs. The ASE would require more p

complex algorithms and fine-tuning than if the VM/370
control program schedules the processor and its resources.
Scheduling by the control program is desirable since it has
been optimized through firmware ([MAC79]).

b. If a single virtual machine is wused, its virtual address
space will not be large enough to hold many users unless
extensive paging is performed by the ASE. Giving each wuser
a virtual machine has the effect of multiplying the logical
address space of the 370 since paging must be performed by
the ASE only if the storage of the virtual machine is
exceeded by the requirements of a single user, not ali
users. If each wuser is allocated a large virtual machine,
the ASE can be optimized to permit concurrent execution of
programs that are memory resident with respect to the user's
virtual machine. The memory for these programs is actually
paged, but by the control program using firmware assists.

Texas Instruments 2-9 Ada Integrated Environment

Technical Report COMMAND LANGUAGE

SECTION 3
COMMAND LANGUAGE

3.1 Command Language Design Goals

The Command Language is the principal user interface to the Ada Integrated
Environment. It should facilitate all user activity while providing
convenient, programmable ways for managers- to control access to all
processing and data resources of the system. Some specific objectives of
the command language design for the Ada Integrated Environment are:

1. Provide a user friendly environment by including:
* Common language for interactive and batch users
* Easy to remember and consistent names
* Explanatory error messages and prompts
* On line help facilities with examples

2. Accommodate varying user characteristics by including:

* Beginner mode: prompting, menus, simplicity, defaults
* Advanced mode: concise; access to advanced features
* Customized working environment for each user
* User-definable commands and command libraries
3. Implement programmable capabilities by including:
* Capabilities to declare variables and constants
* Conditional and iterative statements; blocks; procedures
* Arithmetic and Boolean expressions and operations
* Program invocation and parameter association
* Access to attributes of database objects
* Convenient definition and manipulation of strings

Texas Instruments 3-1 Ada Integrated Environment

Technical Report COMMAND LANGUAGE

3.2 Command Language Functions

User activities at the command language level generally include the
invocation of stored programs, manipulation of database objects, and
generation of reports showing the status of the system, the database, or the
programs.

3.3 Command Language Programmability

The software development model for the Ada Integrated Environment points out
that production of any computer program is a sequence of integrating and
transforming steps, potentially involving a large number of database objects

and software tools. At each step, the wuser must identify the inputs,
processing controls, and outputs of the program to be invoked. After each
program has been run, the wuser must examine available information to
determine success or failure before proceeding to the next step. As the

complexity of a processing sequence ncreases, the potential for error
increases as well; errors are especially prevalent if each processing step
requires extensive user interaction.

If a programmable command language is available, users may construct command
procedures of substantial complexity to automate the routine activity
between steps of the software construction sequence. An appropriate command
procedure may assist the user by determining the parameters to be passed to
each program, checking attributes of database objects for validity, and
taking appropriate action when errors occur.

3.4 Command Language Convenience

While programmability is essential, the Command Language wuser is also
concerned about convenience of use and efficiency. The language should be
expressive and promote readability without being too wordy. Syntax and
semantics should be <clear and as simple as possible. Prompting and
assistance should be available automatically to the inexperienced user, and
command language procedures should be self-documenting, but experienced
users should be able to enter commands in very concise, even cryptic, ways
if they wish. Every user should be able to construct and maintain a
personalized working environment in which commands may be renamed, default
database directories may be specified, and operating conditions may be
"remembered” between interactions with the system.

Texas Instruments 3-2 Ada Integrated Environment

oo

Technical Report COMMAND LANGUAGE

3.5 An Ada-like Command Language

A command language conforming as closely as possible to the syntax and
semantics of a subset of Ada has been selected for this system. The

requirements for programmability are well satisfied, and a systemwide
environment is established in which the casual user invokes stored Ada
programs and command language procedures identically. Attributes are

defined in the language to facilitate the handling of database objects.
Strings are provided as a predefined data type to facilitate the handling of
literal names. A renaming declaration allows wusers to specify shorthand
names and default parameters for commands.

Texas Instruments 3-3 Ada Integrated Environment

;e et O

Technical Report ADA DATABASE SUBSYSTEM

SECTION 4
ADA DATABASE SUBSYSTEM

4.1 Database Design Goals

Modern software engineering techniques emphasize program modularity,
structured design and development, extensive testing, and software
maintainability. Software management is concerned with documentation,
configuration management, and change control.

The Ada language recognizes these important concerns by providing features
to support separate compilation of program units, so that programs may be
designed, written and tested in largely independent parts. These features
are especially useful for large programs and for the creation of libraries.

implementation of an integrated Ada software support system therefore
requires special emphasis on highly automated, flexible, efficient,
programmable capabilities for the storage and retrieval of information
concerning the components of a software product, with facilities to -2 this
information to control all processing in a software developstest and
maintenance environment.

4.1.1 General Requirements

Some of the facilities that an Ada database management system must provide
are: :

t

* Storage resource management

* Data security and user interfaces
* Data change control and tracking
* Data backup and archiving

* Data configuration management.

This section will discuss the Ada language and environmental requirements
for a database subsystem propose a structure to satisfy those requirements,
and discuss the operation of Ada support software in an environment based on
the proposed structure.

Texas Instruments 4-1 Ada Integrated Environment

Technical Report ADA DATABASE SUBSYSTEM

4.1.2 Language Requirements

The Ada language [DoD80B] offers support for separate compilatio n of
program units in a way that facilitates program development and maintenance.
An Ada program is a sequence of program units; these program units may be
subprograms (which define executable algorithms), packages (which define
collections of entities), or tasks (which define concurrent computations).

Subprograms and packages may each be further separated into specifications
and bodies, which may be compiled separately. Ada provides means to specify
or restrict the interdependence between program units, through visbility
rules.

Separate compilation of program units is considered a practical necessity to
divide large programs into simpler, more manageable parts and to provide a
library facility. On the other hand, many of the modern concepts of strong
typing, explicit declaration of all identifiers, nesting of program units
and scope of declarations have significantly complicated the partitioning of
programs into separately managed units. The introduction of generic program

units and overloading in Ada will provide additional challenges to the
program librarian, as will the compiler features (pragmas) INCLUDE and
INLINE.

Other modern language processing practices also require complex library
management procedures by introducing a variety of source-language,
intermediate,and machine-level representations of program units and
associated data structures to support application libraries, machine-
independent optimization, object-level program binding, source-level

debugging, and retargeting.

4.1.3 Environment Requirements

The STONEMAN requirements in support of Ada [DoD80A] specify a software
support environment in which the <central feature is a database, the
repository for all information associated with a software project for the
entire project life cycle.

The Ada database must be a flexible, random-access structure in which the
user defines objects that correspond to the systems, subsystems and program
units of the software configuration(s) to be managed. Some elements of this
data structure will contain information describing the location and physical
characteristics of program units, data, documentation and other database
objects, as a file management system usually does. Other elements must
contain information related to security, configuration management, version
identification, development history and status.

The user may wish to specify access controls such as passwords; schedule and
status information such as creation dates, test completion dates and
versions; programming language and usage codes such as '“source”, “object”,
or "data", or other Boolean, numeric, or string-valued attributes as needed.

Texas Instruments 4-2 Ada Integrated Environment

L 4

LR

Technicai Report ADA DATABASE SUBSYSTEM

The user may define different sets of attributes for different collections
of objects within the database. It will be necessary to control user access
to or modification of certain attributes, to preserve database integrity.

Any object in the database may also possess attributes or contain user-
defined information which relates it to one or more other objects. Examples
of such relations are

* The set of all versions of a particular program unit (the "version
group” of STONEMAN);

* The set of Ada program units that forms a program (the "program
library” of the Ada reference manual};

* The set of database objects that are the responsibility of a
particular programmer or project;

* The set defined by the specifications, source code, intermediate
code, symbol tables, listings, trouble reports, change records,
test data and documentation of one component of a software product
(to satisfy DoD configuration management requirements, such as
those of MIL-STD-1679 [DoD78A}).

An integrated Ada database management system must provide both batch and

interactive interfaces through the system command language. It must also be
a component of the low-level interface through which running user programs
and software tools create, access and modify database objects. It must
provide controlled mechanisms by which users at all levels may define,

specify and modify the attributes of and relations between database objects.

4.1.4 Previous Work

Most large scale operating systems provide sophisticated mass storage
management and file management routines, but they are seldom integrated with
user programmable management systems. Several recent efforts [KP76, 1V77]
provide integrated collections of software tools, facilitating development;
some packages are able to track multiple versions of programs [RO75] or
facilitate separate compilation of Pascal program units [TI79A]. STONEMAN
and other Defense Department specifications [RADCT74E] prescribe a

"programming support library” as an essential element of a software
development system. implementation of a generalized concept of file
attributes, library management, and high-order job control language has been

achieved by at least one major computer manufacturer [BU77A, BU77B]).

4.2 Organization of an Ada Database Subsystem

The following sections propose an organization and structure for an Ada
database. This organization is based on a highly structured directory that
stores user- and system-defined information concerning all objects in the
database. Later sections describe access to the database through the

Texas Instruments 4-3 Ada Integrated Environment

e

Technical Report ADA DATABASE SUBSYSTEM

directory and give some examples of its use by compilers, command language,]
and general user programs.

4.2.1 Logical Organization

There are three general classes of Ada database objects: files,
directories, and dictionaries, distinguished as follows:
* Every database object is a file. A file has a unique name, it has
attributes (defined below), and it contains information.
,]
? * A directory is a special kind of file in the Ada database. It s
3 a form of relational database whose elements contain information
3 pertaining to files. There is one and only one directory element

for each file in the Ada database. A directory element contains
the attributes and relations which describe a file.

* A dictionary is a special kind of file in the Ada database. It
contains the definitions of attributes and relations specified for
a particular set of files. Each Ada directory is linked to a

specific dictionary.

* Any file that is neither a dJdirectory or a dictionary is called a
"data file" in this discussion, regardless of its contents.

Each file is assigned a permanent, unique database name at the time of its ;
creation. This name -- essentially a registration number in the context of |

the host system -- may be used by database management and other routines for
convenient identification.

Attributes coisist of data that concerns only one file. Each attribute has
a name and a value; allowable values are Boolzan, numeric, enumeration or
string literals.

Conceptually, relations are labeled arcs that connect any two files. Each
relation has a unique name. Any file may be connected to one or more others
by the same relation. The value of a relation may be visualized as a list
of file names. All relations are bidirectional; inverse relations are
automatically maintained, and relations may be followed in either forward or
inverse directions.

The logical structure of an Ada database is that of a tree of files. In
turn, the logical structure of a directory is that of a tree of elements
corresponding to some subtree of the database. The pathname of a file or
directory element corresponds to the special attribute NAME and is derived
rom its position in this hierarchical structure.

: A special relation called CHILD may be wused to traverse the tree of

, descendants of any directory element. Each element has a single parent,

. which may be accessed by following the relation PARENT (or INVERSE_CHILD).
The number of descendants of an element is limited only by the amount of
physical storage available for the database.

Texas Instruments 4-4 Ada Integrated Environment

e e

%
%

Technical Report ADA DATABASE SUBSYSTEM

4.2.2 Physical Organization

An Ada database may reside on a combination of media. Immediate access mass
storage, such as disk, is appropriate for active files and directories.
Off-line bulk storage media, such as tape, may be more appropriate for long-
term archiving, backup, and storage of early versions of active files. A
large database may occupy several removable disk packs. In distributed
processing systems, several independent processors may require concurrent
access to shared mass storage.

Efficiency is a major consideration in the design of the database,
especially in the design of directories. Access to directories should be
simple and reliable; updates must be easily and quickly accomplished; the
overhead associated with directory searches must be minimized; and

directories must be protected against inadvertent damage.

The directories suggested here have many of the well-known properties of
hierarchical trees, but also contain linkages best implemented in a general
graph structure. In addition, efficiency of storage and updates must be
balanced against needs for open-endedness; any element in the tree structure
may have an arbitrary number of descendants. The directory structure must
also conform to physical constraints imposed by the storage medium, here
assumed to be disk.

One structure that meets all of the above requirements reasonably well is a
random access file, logically organized as a tree of B-trees [Wi 76]. (A B-
tree is a multiway tree structure subdivided so that subtrees are stored as
units, called pages, to reduce the number of disk accesses. This
organization provides efficient storage utilization, simple algorithms for
search, insertion and deletion, and some other useful properties.) Each
physical record of a directory file is one page of a B-tree and contains one
or more nodes.

Two types of pages are found in the directory. Directory elements,
constructed mostly of pointers, make up directory pages; attributes and
relations, constructed mostly of literal text, make up attribute pages.

Each directory element has a name, a pointer to a B-tree of children, and a
pointer to a B-tree of attributes and refationships.

A B-tree may contain many pages, depending on the number of nodes (elements
or attribute data) it contains. One distinguished page, called the root
page, is the first allocated for a new B-tree and is released only when the
entire B-tree is deleted. It is thus possible to use a root page number as
a permanent pointer to a B-tree, even though B-trees may be re-balanced and
all other pages allocated or deallocated dynamically.

Each directory element has a "given" name, which is a single identifier, and
a "full” name which is constructed by concatenating the given names of its
ancestors in the tree structure. Each directory element may also be located
by its unique "element address,” which consists of the root page number of
its B-tree and its given name.

Texas Instruments 4-5 Ada Integrated Environment

- e - i — " . R - ¥ K 2 Fr Py 3 o e " @ Pon o sl g » e
mid . - - 2 —_———

Technical Report ADA DATABASE SUBSYSTEM

4.3 Operation of the Ada Database Subsystem

This section discusses the implementation of access to the Ada database by
an operating system, user programs, and command language. Features
necessary to implement an Ada compiler are given special attention.

4.3.1 Creation and Deletion of Database Objects

The database subsystem must be capable of creating temporary files as needed
by running programs, and of making permanent directory entries for any of
these files that Apse tools or users wish to save.

* Each file must be assigned a unique database name upon creation.
Its directory record is constructed and entered, and a hierarchical
pathname is assigned when the file is saved.

* Provisions must be made to handle the situation that arises when a
program attempts to save a file with a pathname that already exists
in a directory, thus attempting to replace one or more existing

files. This may be permitted for some file categories but denied
for others.
Any node in the directory may be given a new pathname. If a node s
renamed, all of its descendants are also. Database names, however, are
permanent.
* If a node is given a pathname that already exists in the

directory, it implies replacement of one or more existing files.
This may be permitted for some file categories but denied for
others.

* Relations between files should be unaffected by renaming. This
may be accomplished by using database names, rather than pathnames,
to describe relations.

* Correspondence between database names, host filesystem names and
the hierarchical pathnames of database objects must be maintained

. in a database map. The contents of database objects may be copied
1 to other storage media or removed from online storage.

* Appropriate attributes and relations should be copied with the
contants of database objects to archival storage.

* Complete deletion of a database object may not be permissible if
it is related to any other objects. On the other hand, deletion
may be permissible if the object has no relations.

4.3.2 Access Control

Access to files in the Ada database should be restricted only by the
management policies of the wuser community. Directories and dictionaries,

Texas Instruments 4-6 Ada Integrated Environment

Technical Report ADA DATABASE SUBSYSTEM

however, define the structure of the database and provide the mapping of
database objects into physical storage. User access to directories should
be accomplished only through a protected interface.

The following primitive operations must be implemented:

* On dictionaries: Creation and initialization, definition of
attributes and relations, and lookup of the definitions of
attributes and relations.

* On directories: Creation and initialization, creation of
elements, lookup of elements, making and breaking relations between
elements, assigning values to attributes, retrival of attribute
values and relations, renaming and deletion of elements.

* On files: Creation, location, storage management, access control,
data transfer, copying, archiving, res.oration, renaming and
deletion.

In addition, directories must be protected against damage from concurrent
attempts to update by independent processors in distributed processing
systems. These synchronization mechanisms must provide locks on individual
records in directory files.

File security in the traditional sense is implemented by directories
containing the “access privilege," other attributes of users and relations
between users, by file attributes or relations which describe access

constraints, and by routines that compare user attributes against file
attributes whenever access to a file is attempted.

Access control may also be applied by use of "usage" attributes so that, for
example, an Ada compiler will reject any input file whose "usage" attribute
is not "Ada source text."

These primitive routines will be implemented as components of the kernel Ada
environment. System and user programs interact with the database through
file attributes and relations. Host operating system facilities will be
used where appropriate.

4.3.3 Ada Program Interfaces

Ada programs have facilities to declare files as program variables.
Programs should also be able to specify the attributes of files in their
declarations, to specify the record structure associated with a file, to
determine the value of any file attribute during execution, and to modify
the values of appropriate attributes during execution.

An Ada implementation should provide a minimum set of operations for
association with an external file (OPEN, CLOSE) and for processing or
positioning (READ, WRITE, SPACE). All other functions may be handled as
interrogation or modification of the appropriate attributes. For example,
given file F:

Texas Instruments 4-7 Ada Integrated Environment

Technical Report ADA DATABASE SUBSYSTEM
F'NAME -- returns the external name as a string
F'SIZE == returns the number of records in the file
F'OPEN -~ returns TRUE if an external file is associated
F'KIND -~ returns a value representing the external device
F'ACCESS -- returns IN, OUT, or INOUT as appropriate.
F*CATEGORY ~-- returns a string describing the intended use

Similarly, attributes may be modified when appropriate:

F'NAME := 'ALPHA.BRAVD' -- assigns the external name
F'KIND := DISK -- assigns this file to a disk device
F'NEXT := 1 -- rewinds the file.

Relations may be handled like attributes in many ways, but the value of a
relation is a list in the general case. User-level facilities must be
provided to establish (make) a relationship between two files, and to break
such a relationship. A convenient data structure and operations must be
provided to work with the sets of names of files obtained through relations.
(For example, FCHILD refers to all of the immediate descendants of the file
F.)

Since attribute identifiers are user-defined in dictionaries in the
database, it will be necessary for the Ada compiler to generate a subprogram
call, probably to an operating system routine, passing the literal attribute

identifier and the file descriptor as parameters. This mechanism provides
security and flexibility, but does introduce a modest execution-time
overhead.

4.3.4 Command Language Interfaces

The command language for an Ada environment should allow the user to
customize the environment to suit his application. It should be possible to
develop command language programs to automate routine chores and to enforce
the configuration management and quality control policies of a project. A
well designed command language should allow programming of arbitrarily
complex operations on database objects while maintaining a consistent, clean
user interface.

A single “"command” (in any command language) typically initiates execution
of a stored program, such as a compiler, and passes parameters to it. In
most systems, parameters are passed as literal strings of characters which
are then interpreted either by the operating system or by the invoked
program, Very frequently, these literal parameters are the names of files.
Frequently executed or simple commands, such as deletion of a file, may be
carried out by routines embedded in the command interpreter; the mechanism
is essentially the same as if a stored program had been invoked, but some
overhead may be saved.

Texas Instruments 4-8 Ada Integrated Environment

Technical Report ADA DATABASE SUBSYSTEM

Ve -

c Many command languages permit specification of some of the attributes of the

files passed as parameters to programs, but only a few provide facilities

for direct, general interrogation or modification of file attributes or ‘
relations between files in a database. (Burroughs B7000/B6000 "Workflow 1
Language”"[BU77A] is one example.)

The command language of an Ada environment should provide controlled
facilities for access to the database, with simple constructs to interrogate
or alter file attributes and relations. it should have facilities for
conditional execution of stored programs, for the dynamic construction of
parameters and examination of program results, and for a limited repertoire
of arithmetic, Boolean and string operations.

v ‘rkw NIRRT T

4.3.5 Compiler interfaces]

Several Ada language features interact strongly with the library management
system. Of these, the most important is separate compilation. Some of the
requirements that separate compilation places on the library system are:

* Naming conventions that unambiguously identify the files
corresponding to the compilation units of a program library, or
mechanisms to construct file names from program unit names as they
are needed;

B i L st o e e o

* Attributes that identify the various representations of a program
unit (source text, intermediate text, object code, and other forms)
and files associated with them (listings, symbol tables, flow
graphs and others);

A

!

v * Attributes (or related files) that store development and change
] history for each program wunit, including compilation dates and
times, and attributes to identify the various versions and
revisions of a unit;

* Relations that associate all of the various representations of a
F' program unit, including specifications and other documentation;
* Relations that show the interdependencies between program units,

such as the association between module specifications and module
bodies, or links between units that use INCLUDE pragmas and the
files INCLUDEd.

In the process of determining a compilation context, checking the validity
of a compilation context, enforcing the proper order of compilation, reading
symbol tables and other texts, and producing output files, a compiler must
interact with the Ada database in a variety of ways. Some of the general
functions that must be accomplished by the compiler are: 1

* Construct file names from the identifiers found in with clauses
and INCLUDE pragmas, and dynamically associate internal files of
the proper types with external files named by the constructed

IR RS R A A

LR G

Texas Instruments 4-9 Ada Integrated Environment

E,
.

Technical Report ADA DATABASE SUBSYSTEM
names;
* Examine the appropriate attributes of files to determine the

validity of a compilation context;

* Construct the derivation record of a each output file created,
using the input file name(s), control file name, and compiler
identification;

* Assigh attribute wvalues (such as "usage, " "compiler_name,"
"compiled_date,” and "compiled_time") to output files as they are
completed;

* Create or update development-history files, as necessary, for

output files as they are completed;

* Establish relations between input files and output files as
appropriate;

* Deal with errors as they occur.

4.4 Conclusions and Summary

The directory, dictionary and Ada-like command language concepts described
have been implemented and used at Texas Instruments for approximately four
years in software development facilities supporting projects in Pascal and
Fortran.

The command language appears to be easy (for programmers) to learn and use,
and more than adequate for the expression of database manipulation
algorithms. The string handling features of this language have been
essential for the dynamic construction of file names and are unexpectedly
useful for other purposes, such as report generation.

Database performance is a critical issue. There should be as few
constraints as possible on the size of data items, or the number of entries
in a directory, or the number of operations performed during a single
database access. The hierarchical organization of the database leads
naturally to the use of recursive procedures in command language programs;
the implementation of the command language must provide sufficient memory to
accommodate deep recursions.

Database integrity is also an important issue, since most modern software

development facilities are multi-user (and frequently multiprocessor)
environments. Facilities must be provided to allow multiple access to
directories and to allow various wusers to wupdate different parts of a
directory simultaneously, without conflict. Record-level locking appears to

be a satisfactory solution to this problem, but in system configurations
where multiple processors communicate only through shared disk, the locks
must also be written to disk and problems may arise if a processor (fails
during an update.

Texas Instruments 4-10 Ada Integrated Environment

B e o Antten dnsiub it A S i

Technical Report ADA DATABASE SUBSYSTEM

The interfaces between user programs, including compilers, and the database

should be simple, familiar, and convenient. To the extent that it s
reasonable,the physical details of storage media should not concern the
user, In particular, storage allocation, backup and restoration of files

should be automatic. On the other hand, the user should have the power to
configure an environment best suited to his own application and methodology,
an argument for flexibility and extensibility.

The general concept of file attributes has been used in several successful
large systems. The extension of this notion to describe relations between
files appears natural in an environment where many complex, overlapping
interdependencies may occur. A few programming language extensions may be
required to describe relations in a convenient way.

The database is generally acknowledged to be the central feature of a
software development facility; its management is crucial to the success of a
.arge software development project. Thoughtful design of an Ada database
subsystem is crucial to the success of the language.

Texas Instruments 4-1 Ada Integrated Environment

St e fen i be e

-

Technical Report ADA LANGUAGE PROCESSORS

SECTION 5
ADA LANGUAGE PROCESSORS

5.1 Compiler Design Goals

A major compiler design goal was to produce a high-quality production Ada
compiler, i.e., a compiler that qenerates object code comparable to hand
produced code. Therefore, the design incorporates the latest optimizing
compiler technology which has been applied and proven. The philosophy
behind this approach is that such an optimizing compiler, meeting the
performance requirements in the SOW, can be cost effective for the
development and maintenance of software for embedded computer systems. Size
of object code is a major consideration for these systems; optimizations
must be applied to attain compact efficient code.

5.2 Compiler Structure

The structure of the Ada optimizing compiler is mainly based on the compiler
technology and the intermediate Ilanguage wused. Using as a baseline the
compiler technology developed by Texas Instruments for its Pascal compilers
(Tt Pascal and Microprocessor Pascal) and Fortran compiler (on its dataflow
processor and Advanced Scientific Computer), the most current, proven
compiler technology was injected, viz., the technology used by the Bliss-11
optimizing compiler [WUL75], the technology used by the target compiler, or
PQC, produced by the PQCC system [WUL79, WUL8S0OA, WUL80B], and the technology
used by the University of Karlsruhe in their compiler front end for the
German MoD [GOO80]. There are a number of reasons for this approach.

* Texas Instruments Pascal compiler technology is applicallie since
Ada is Pascal based. Texas Instruments experience in using a
recursive descent parser in its Pascal compilers will be utilized.

* Texas Instruments Microprocessor Pascal language contains a
process construct and semaphores, and the experience in handling
these constructs will be applied to compiling Ada tasks and the
rendezvous constructs. The experience in constructing the Pascal
run-time environment will be drawn upon to determine the Ada run-
time environment and therefore the proper code to generate and the
necessary processing to be performed.

* Texas Instruments extensive experience with machine independent
optimization in its Fortran compiler for the ASC and dataflow
processors will be applied appropriately to the optimization pass
of the Ada compiler.

Texas Instruments 5-1 Ada Integrated Environment

mddiic

Technical Report ADA LANGUAGE PROCESSORS

* The main goal is the generation of high-quality code. To achieve
this end requires examining a wider global context of constructs
instead of narrow local contexts. The former approach s
exemplified by the latest compiler technology, the later by older
ad hoc techniques. Therefore, the PQCC technology, which is being
used to generate an Ada compiler, is applicable. Bliss-11 is also
applicable; it is one of the better optimizing compilers and
generates excellent high-quality code.

* The crux to the speed of the compiler are the algorithms employed,
not the rewriting of routines in machine language (a rewrite
results typically in a 10-20% increase in throughput while use of a
better algorithm can result in a factor of 2-5 increase). The
algorithms (for code optimization, code generation, tree walks,
etc.) used in Bliss-11 and PQCC are the result of vast experience
and can be adapted to handle Ada. They are tree-oriented, i.e.,
designed for IL's represented as trees such as TCOL [BROS80A], AIDA
[DAUBOE], or DIANA [GOO81]. One can draw on the practical
experience obtained from wusing the algorithms thereby reducing
development time (i.e., reinventing the wheel, making non-optimal
design decisions, etc.).

* Parts of the PQCC system still in the research area (e.g.,
automatic generation of tables from a machine description for input
to a machine-independent code generator) can be adopted when the
technology is developed.

* The goal of the PQCC research effort to construct machine-relative
compilers {wuLsoB], i.e., compilers parameterized by the
characteristics of the target machine, is another desirable goal
since it can improve the quality and reduce the cost of retargeting
the compiler.

* The Ada-0 approach is based on the formal definition of Ada. This
formal approach lends credulity to the belief that the resultant
compiler is both correct and complete, moreso than for an ad hoc
approach. Correctness and completeness are important
characteristics with respect to passing the compiler validation
test [SOFTS80B].

5.2.1 Description of the compiler

The Ada optimizing compiler consists of two parts: a front end (analyzer
pass) and a back end (expander/optimizer and code generator pass). The
front end, back end dichotomy is dictated by the definition of DIANA
[GOO81], the intermediate language used between passes. DIANA defines an
intermediate representation of an Ada program for a particular point in the

compilation sequence. As such it assumes a particular model of the
compiler, In particular, certain processing is not performed by the front
end resulting in a high-level representation of the Ada source test. For

example, expansion of generic instantiations, processing of pragmas (e.g.

Texas Instruments 5-2 Ada Integrated Environment

e e ST T T ey
Technical Report ADA LANGUAGE PROCESSORS
INLINE), expansion of array subscript calculations into address
calculations, etc. must be performed in the back end. For this reason,

machine independent optimization is preceeded by a phase which transforms
(expands) the high-level IL representation into a lower level representation
that embodies decisions based on the target machine.

5.2.2 Organization of the Code Generator

The code generator is table driven [CAT79, GRA80]. The advantages of this
organization are

* it results in a code generator that is machine-relative [WULS80],
i.e., one that is parameterized by the characteristics of the
target computer, thereby simplifying the task of retargeting the
code generator for another machine; and

* knowledge about the target computer 1s encoded in tables as
pattern-action pairs and not scattered throughout the compiler code
thereby making maintenance, modification and debugging easier.

The code generator is thus simplified to a machine-independent algorithm for
pattern matching and is more comprehensive and (possibly) faster than ones
that do comparable analysis. The pattern-action pairs will be generated by
hand for each target machine. When the technology is developed [LEV79,
LEV80, WULB0] to automatically generate them from a formal description of
the target machine, it can be used and greatly facilitate retargeting the
compiler to other machines.

5.3 Selection of a Recursive Descent Parser

The reasonablie alternative parsing strategies are recursive descent and
LALR(1). LALR(1) parsers tend to be smaller parsers and are extremely
efficient. However, a substantial effort must be expended on the tool which
processes the grammar and builds the syntax tables used by the parser. Even
if such a tool were available, and there are several, it would have to be
recoded in Ada to satisfy the contractual requirements.

Recursive descent has the advantages that it is well understood, straight-

forward, and relatively simple to implement. In addition, if an effort is
made to factor the grammar as much as possible, it is not much less
efficient than table driven methods. Recursive descent parsers also lend

themselves well to the development of ad hoc error recovery techniques, and
are easy to modify and debug since the syntactic analysis and the semantic
analysis are intermixed. The latter point should be emphasized because most
table-driven parsers perform only syntactic analysis, therefore, they must
be followed by semantic analysis. This means considerable duplication of
effort between the two passes. Recursive descent also allows systematic
construction of the parser according to a set of rules which map the syntax
diagrams into a sequence of statements. This can lead to a more efficient
and more easily managable system.

Texas Instruments 5-3 Ada Integrated Environment

~

RN

Technical Report ADA LANGUAGE PROCESSORS

5.4 Selection of an Intermediate Representation

In selecting an intermediate representation for Ada programs, there are two

forms to consider: linear and non-linear. Linear representations, such as
Polish notation, triples, quadruples, and P-code, are essentially machine
instructions for an underlying abstract machine. Linear representations
have several drawbacks. Information needed for optimization or efficient
code generation is not inherent in the representation, e.g., control
constructs may be decomposed into more simpler primitive forms. In
particular, for optimization more context is required than can be retained
in a linear representaton. Moreover, mapping non-linear information, such

as flow graphs, onto the program representation is both awkward and
expensive.

A linear representation is attractive if a common intermediate language (IL)
is to be wused both for interpretation and code optimization/generation.
This approach has been tried using P-code [SIT79, KOR80] where sufficient
information for code optimization/generation is appended to a P-code
instruction. This research has not demonstrated that efficient code can be
generated for register machines. The design decision that the source level
debugger not interpret the intermediate language, but execute the machine
language directly alleviates the requirement of a dual purpose intermediate
language.

Therefore, it was decided to choose a tree structured intermediate
representation. It is more suitable for the back end of a compiler, i.e.,
for performing global optimizations and generating efficient code.

5.5 Selection of the Intermediate Language

The tree-oriented intermediate language selected by Texas Instruments s
DIANA [GOO81]. There are a number of reasons for this design decision.

* First, DIANA is the progeny of two very similar tree-oriented
intermediate languages designed for Ada: AIDA and TCOL-Ada. DIANA
is better than either of its parents, for it benefits from
extensive design experiences with compiling Ada to both previous
forms.

* Second, Texas Instruments views the creation of DIANA as the first
step in the process of standardizing on an intermediate language.
A standard intermediate language will provide a uniform interface
between different Ada compilers, tools, and programming
environments and can lead to a standard front end.

* Third, DIANA is based on ..e formal definition of Ada [Cli80].
Completeness and correctness of the intermediate representation of
an Ada program is guaranteed.

* Fourth, Diana is designed for use by environment tools other than
the front and back ends of a compiler.

Texas Instruments 5-4 Ada Integrated Environment

Technical Report ADA LANGUAGE PROCESSORS

* Fifth, it is possible to regenerate the source text from its DIANA
representation.

* Finally, DIANA is extensible, i.e., different dialects can be
created. This is necessary so attributes required by particular
tools can be incorporated, in particular, the encoding of
information needed by an optimizer or code generator. One tool,
which derives a dialect for such purposes, IDL [NES81], already
exists and can be utilized. Such a tool should be part of the
standard.

5.6 Processing of Generics

Based on the definition of DIANA the front end of the compiler does not
expand a generic instantiation or perform generic optimization. When to
perform the instantiation expansion is a design issue. There are a number
of factors to be considered.

* First, due to separate compilation and the fact a program library
may contain a family of programs, the compilation wunits that
constitute the program are not known until link time; input to the
program binder is the name of the compilation unit in the program
library that is the main program. Expansion of a generic
instantiation cannot be delayed until link time for this would
require that compilation of units that utilize the instantiation
also be delayed.

* Second, a generic definition may not be sufficient to determine
the form of an expansion, e.g., in the case of a generic definition
whose formal parameters depend on the formal parameters of the
generic definition in which it is embedded, or the case where it is
necessary to know the size or frequency of a dependency relative to
the total code. Deciding on the form requires knowledge of all
instantiations and the size of the compiled code, repectively.

* Third, generic expansion is machine dependent and therefore must
be performed by the back end.

The approach taken is to expand a generic instantiation at the IL fevel in
the expander/optimizer. The expansion can then be processed by later parts
of the compiler resulting in a customized expansion. Prior to linking, a
package is called by the program binder that performs generic optimization.
The package is given a list of instantiations for a generic definition. If
generic optimization determines no code can be shared, the customized
! expansion is used. If code can be shared, a new expansion is generated.
b The binder then decides whether it is cost effective to replace the original
: expansions with the new. |If it is, compiled code is retrofitted to use the
new expansion in a manner that preserves the existing interface; this s ‘
managed by the program binder and performed at link time. For example, in |
the case of a generic subprogram, a new routine would be formed out of the

Texas Instruments 5-5 Ada Integrated Environment

bk " i il " WO TGPRCTE T _ . —— s , P———

Technical Report ADA LANGUAGE PROCESSORS
object module for the new expansion. It would consist of multiple entry
points, one for each instantiation. At each entry point additional

parameters or case discriminates would be set followed by a branch to the
common body.

5.7 Expansion of Inline Subprograms

The expansion of inline subprograms could be handled at the source level as]
an unnamed block. This would result in a stack frame containing the
parameters and local variables. This approach is contrary to the philosophy
behind the inline pragma, which was to eliminate as much as possible the

3 overhead associated with a procedure call. Therefore, the inline expansion
' will take place as an integration of the IL of the callee with the IL of the !
A caller at the point of call. This approach also has the advantage that name !

conflict, type resolution and parameter matching problems are handled more
cleanly than at the source level.

5.7.1 Expansion of Inline Functions

There are a number of issues related to the expansion of inline functions.
Functions which are components of an expression may be expanded in one of
two places. Either the function is removed from the expression, and
expanded and the resulting temporary variable is substituted for the removed
function invocation, or the function is expanded in-place in the expression.

Placing an inline function in front of a expression will involve the
substitution of a ‘load resultant temporary' instruction in place of the
function invocation, finding the root node of the expression and inserting
the inline expansion prior to the expression. This entails some complex

rules for the substitution.

It has been postulated [SCH80] that the expansion of an inline function
would be impossible without some complex rewriting rules. This is true for
either expansion method. Inline functions could be expanded within the
expression, treating the expanded code and resulting value as an algebraic
parenthetical sub-expression. This expansion will make register allocation

. difficult. A set of registers may have to be stored and restored multiple

: times within an expression to handle the IL describing the program
constructs, i.e., expressions, loops, etc., found within the function. J

The controversy surrounds the fact that the removal of the function may
alter the results of the expression. For instance, if a function causes the
modification of a global variable which is found within the same expression
as the function call, then the occurence of the inline function and its
relative location to the global variable may change the semantics of the

expression. The Ada Reference Manual (Section 4.5) states, 'The language
does not define the order of evaluation of the two operands of an operator
(excepting short circuit control forms). A program that relies on a
specific order (for example because of mutual side effects) is therefore “
erroneous.’ This is an implicit authority to expand an inline function in :
Texas Instruments 5-6 Ada Integrated Environment i

—— T e _.-,.4.__.__,*_;______.»__‘_“___‘!
.

t Technical Report ADA LANGUAGE PROCESSORS

either manner. To keep the work to a minimum for the code generator, inline
functions which are found within expressions will be removed to the front of
the expression tree, expanded and the result placed into a compiler
generated temporary variable.

5.8 Bootstrapping the Compiler

Texas Instruments plans to use an Ada front end developed by the University
of Karlsruhe to construct a bootstrap compiler. A preliminary release s
) expected in April-May 1981, with the final release scheduled for October
i 1981. The Karlsruhe front end accepts full Ada [DoD80B], outputs DIANA, and
4 implements the Ada separate compilation facility. It is a production
quality program, written for the German Federal Ministry of Defense.

Use of a bootstrap compiler permits implementation of the AIE tools to
proceed in parallel, especially those whose interface is DIANA, and allows
all tools to be written in Ada from the outset.

The Karlsruhe front end was written in Ada-0, transformed to LIS, compiled
by the Siemens 7760 LIS compiler, and linked with the LIS run-time package
to produce an executable program which runs under the BS2000 operating
system. The Siemens machine is essentially a copy of the IBM 370 and this
fact permits the front end object modules to be transported to |BM systems.

Texas Instruments will take the object modules constituting the executable
front end and transform them into 370 object modules that may be linked and
run on the IBM 370 under VM. This process involves (possibly) rewritting
certain routines (e.g., the run-time initialization routine), emulating
certain Siemens instructions (e.g., LBF, STBF), fixing the object format
(e.g., ESD cards), and emulating certain OS functions (e.g., output).

Texas Instruments will write a simple throw away [BM 370 code generator in
Pascal that accepts Diana and outputs IBM 370 object modules. The code
generator will generate code based on the Ada execution environment model.
The Ada execution environment for the bootstrap compiler will be simplified
to use only those features required by the subset of Ada needed to write and
maintain the compiler for the Ada Integrated Environment. This subset will
be similar to Ada-0 and will not include reals, tasking, and generics. The
Ada execution environment will be written in Ada and 370 assembly code.
This approach permits Texas Instruments to become familiar with Diana to
generate code and to verify some of its Ada execution environment concepts.

With these two executable programs, i.e., the front end and the 370 code
generator, Ada programs can be compiled, linked with the Ada execution

environment modules, and executed. In particular, the Ada Iintegrated
Environment tools can be compiled and executed in this manner.

Texas Instruments 5-7 Ada Integrated Environment

WA

Technical Report TEXT EDITOR

SECTION 6
TEXT EDITOR

6.1 Text Editor i

The Ada Interactive Text Editor is based upon the capabilities provided in
two widely used text editors [DECS80, 1BM80], which both access capabilities
from two types of terminals.

6.1.1 Terminal Dependencies

Both text editors provide for access from a teletypewriter and a video
display terminal (VDT). However, the VDTs from which they may be accessed
A differ greatly in the capabilities that they possess. The type of VDT used
| by the DEC EDT editor communicate with the host system at the character
’ level, whereas* the VDT used by the IBM XEDIT editor communicates with the
host system at the screen level.

The Ada Editor is designed to function with a teletypewriter and both types
of VDTs mentioned above. Designing an editor that functions similarly on
all three types of terminals requires that a common ground be found among
the capabilities of the terminals.

Commands from teletypewriters are limited to textual commands. Commands
from VDTs may be in the form of special characters (control keys) or
modification of text by overwriting existing text displayed on the screen of
the VDT.

6.1.2 Editor Commands

Editor commands have been designed to be similar to natural fanguage in
order to make them easier to use by a novice and easier to remember by an

’ experienced user. It has been demonstrated that commands similar to natural
| language decrease erroneous command entries, increase editing efficiency,
' and are prefered by wusers [LEDB80]. To enable an experienced user to

decrease the number of keystrokes required to enter a command, each of the
commands may be abbreviated to the shortest possible string which may be
uniquely recognized.

Positions within the text being edited are specified by a name which may be
chosen by the user. Hence, a user may reference portions of text by a
mnemonic of his own choice, rather than a line and column number determined
for him by the editor being used. The NAME command is used to give a "name"

Texas Instruments 6-1 Ada Integrated Environment

I-M__.____________________ - 4

Vechnical Report TEXT EDITOR

to a portion of text.

Texas Instruments 6-2 Ada Integrated Environment

Technical Report GLOSSARY

APPENDIX A
GLOSSARY
Abstract Syntax Tree -- An abstract syntax tree (AST) is a data structure

built by the analyzer phase of a compiler to define the syntactic
relationships between the tokens of the program unit.

Accept Statement -- An accept statement defines the actions to be performed
when an entry of a task is called.

Access Type -- An access type is a type whose objects are pointers to
dynamically created objects. The object itself is created by an allocator.

Access Value -- An access value designates an object pointed to by an entity
of an access type.

Ada Database Subsystem -- The Ada Database Subsystem (ADS) provides data
structures and facilities for storage and retrieval of information. its
components provide interfaces between the database and its wusers, provide
utilities for the handling of database objects, and provide facilities for
the management of users, access controls and security.

Ada Language Processors -- The Ada Language Processors transform the source
text of program units into the machine code of target computers. These
tools consist of an Analyzer, an Expander/Optimizer, and a Code Generator.

Ada Software Environment -- The Ada Software Environment (ASE) provides an
interface between the user of the Ada Integrated Environment and the host
system on which it is installed.

Ada Programming Support Environment -- An Ada Programming Support
Environment (APSE)} is a collection of software tools which provides
facilities for the design, development, maintenance and management of

software for one or more target computers.

Ada Programming Toolset -- The Ada Programming Toolset provides miscel tools
or the development of Ada software; the minimal toolset includes a Text
Editor, a Program Binder, and an |nteractive Debugger.

Address Space -- Address space is a set of memory locations available for
storage of programs and/or data.

Aggregate -- An aggregate is a written form denoting the value of an object
of a composite value. An array aggregate denotes a value of an array type;
a record aggregate denotes a value of a record type. The components of an
aggregate may be specified using either positional or named association.

Texas Instruments A-1 Ada Integrated Environment

TN WA ey] W g A = ey

TR eI T T 0w

Technical Report GLOSSARY

Allocator -- An allocator creates a new object of an access type and returns
an access value designating the created object.

Analyzer -- An analyzer is a language translator that accepts source text
for a compilation unit, performs lexical analysis, checks the syntax and
static semantics of the compilation unit, and produces an intermediate
representation that is more convenient for processing by compiler components
and other tools. See also Front end.

Array Aggregate -- See Aggregate.

Array Type -- An array type is a collection of similar components addressed
by one or more indices.

Asynchronous -- An event is said to be asynchronous if its occurrence is
independent of other events in a system; e.g., depressing the break key
causes an asynchronous program interrupt.

Attribute -- An attribute is a predefined characteristic of a named object.

Back End -- The back end of the Ada Optimizing Compiler is a language
translator which accepts the DIANA dialect produced by the front end for a
compilation unit and produces an object module for the compilation unit.
The back end consists of the Expander/Optimizer and Code Generator passes.

Binder -- See Program 8Binder.

Block -- A block defines the scope of identifiers and other entities within
an Ada program. A block statement contains an optional declarative part,
followed by a sequence of statements, with an optional exception handler.
Its body must be delimited by the BEGIN and END reserved words.

Body -- A body is a program unit defining the execution of a subprogram,
package, or task. A body stub is a replacement for a body that is compiled
separately.

Bootstrap Compiler -- A bootstrap compiler is an intermediate Ada compiler
used for the development of the Ada Optimizing Compiler (which will compile
itself).

Break Key -- A break key is a terminal keyboard key that interrupts
execution of the current program.

Breakpoint -- A breakpoint is an event in a target program which causes
execution to be suspended and passes control to the Debugger.

Call Handler -- The Call Handler is the Ada Execution Environment routine
that implements subprogram calls; i.e., it transfers control from one
subprogram to another.

Code Generator -- A code generator is a tool used to transform the
declarations and statements of a program unit from an intermediate
representation to a form compatible with the instruction set architecture of

Texas Instruments A-2 Ada Integrated Environment

e Wk A g e e 2

- o Al S

Technical Report GLOSSARY

a target machine,

Code Section -- The Code Section is the portion of a bound program segment
which contains the executable object code.

Code Section Dictionary -- The Code Section Dictionary is the portion of a
bound program segment which contains entries indicating the locations of
internal and external subprograms.

Collection -- A collection is the set of allocated objects of an access
type. ‘
Command File -- A command file is a file which contains a sequence of

command language statements.

Command Language -- A command language is a collection of instructions to
the Ada Integrated Environment specifying the execution of Ada programs; as
such, it provides the user interface to the Ada Software Environment.

Command Language Interpreter -- The Command Language Interpreter (CLI) is a
task within the Executive Program that is instantiated to translate and
interpret the command language with which the Ada Integrated Environment
user specifies the execution of Ada programs.

Command Procedure -- A command procedure is a file containing a sequence of
command language instructions that is written in a form identical to an Ada
procedure. A command procedure has its own name space; it may have
parameters.

Compilation Unit -- A compilation unit is a program unit presented for
compilation as an independent text. It is preceded by a context

specification, naming the other compilation units on which it depends. A
compilation unit may be the specification or body of a subprogram or
package.

Compiler -- A compiler is a composite transformation tool consisting of a
translator, optimizers, and a code generator. See also Ada Language
Processors,

Component -- A component denotes one of a group of related objects known as

a composite object. An indexed component naiies a component in an array or
an entry in an entry family. A selected component is the identifier of the
component, prefixed by the name of the entity of which it is a component,
for instance, a discriminant within a record.

Composite Type -- An object of a composite type is a group of related
objects known as components. An array type is a composite type, all of
whose components are of the same type and subtype; the individual components
are selected by their indices. A record type is a composite type whose
components may be of different types; the individual components are selected
by their identifiers.

Computer Program Component -- A Computer Program Component (CPC) is a

Texas Instruments A-3 Ada Integrated Environment

Technical Report GLOSSARY

functionally or logically distinct part of a Computer Program Configuration
ltem (pPCI) distinguished for purposes of convenience in designing and
specifying a complex CPCI as an assembly of subordinate elements.

Computer Program Configuration Item -- A Computer Program Configuration {tem
(CPCI) is an aggregation of hardware/software which satisfies an end use
function; a system segment.

Configuration -- A configuration is a collection of database objects that
are related by some common property or requirement.

Configuration Management Tools -- Configuration Management Tools are used to
record and control the changes made to constituent units of a software
product so that the product is consistently constructed from known,
compatible parts.

Constant Handler -- The Constant Handler is an Ada Execution Environment
routine which determines the location of the constant section associated
with a program unit in a code section.

Constant Section -~- The Constant Section is the portion of a bound program
segment which contains blocks of constants (read-only data) associated with
program units.

Constant Section Dictionary -- The Constant Section Dictionary is the
portion of a bound program segment whose entries indicate the location of
internal constant blocks.

Constraint -- A constraint is a restriction on the set of possible values of
a type. A range constraint specifies lower and upper bounds of the values
of a scalar type. An index constraint specifies lower and upper bounds of
an array index. A discriminant constraint specifies particular values of

the discriminants of a record or private type.

Context Specification -- A context specification defines the other
compilation units upon which a compilation unit depends.

Control File -- A control file provides an interface between a user and a
running Ada program. It contains detailed instructions that specify the
processing to be performed by the program.

Control Program -- The Control Program (CP) is the component of the VYM/370
which acts as the virtual machine monitor. i1t simulates multiple virtual

machines on a single physical machine.

Cross Reference Analyzer -- A cross reference analyzer is a tool that
locates the definition of each symbol in a program unit and identifies the
program statements that refer to the symbol.

Database Name -- The database name is the unique internal name of an object
assigned by the Ada Database Subsystem when the object is created.

Debugger -- A source level debugger is a dynamic analysis tool that maps the

Texas Instruments A-4 Ada Integrated Environment

o r——— -

ey

¢ e ey ———— rm— — <o
PR

Technical Report : GLOSSARY

memory image of an executing Ada program to the source program text and data
definitions, allowing a user to examine or modify data values and to control
program execution.

Declarative Part -- A declarative part is a sequence of declarations and
related information such as subprogram bodies and representation
specifications that apply over a region of a program text.

Demand Segmentation -- Demand segmentation is a method of memory management
in which segments are loaded into memory as they are referenced. See also

Segmentation.

Derived Type -- A derived type is a type whose operations and values are
taken from those of an existing type.

DIANA -- DIANA is a high level intermediate language produced from the
source code by the front end phase of the Ada Optimizing Compiler. This
intermediate language is later optimized by the Expander/Optimizer and
translated to machine language by the Code Generator.

Discrete Type -- A discrete type has an ordered set of distinct values. The
discrete types are the enumeration and integer types. Discrete types may be
used for indexing and iteration, and for choices in case statements and
record variants.

Discriminant -- A discriminant is a syntactically distinguished component of
a record. The presence of some record components {other than discriminants)
may depend on the value of a discriminant.

Discriminant Constraint -- See Constraint.

Editor -- See Text Editor.

Elaboration -- Elaboration is the process by which a declaration achieves
its effect. For example, it can associate a name with a program entity or
initialize a newly declared variable.

Embedded Computer -- An embedded computer is designed for a specific
function and resides in the system that performs the function.

Entity -- An entity is anything that can be named or denoted in a program.
Objects, types, values, and program units are all entities.

Entry -- An entry is used for communication between tasks. Externally, an
entry is called just as a subprogram is called; its internal behavior is
specified by one or more accept statements specifying the actions to be
performed when the entry is called.

Enumeration Type -- An enumeration type is defined by explicitly listing the
values which that element may assume. These values may be either
identifiers or character literals.

Exception -- An exception is an event that causes suspension of normal

Texas Instruments A-5 Ada Integrated Environment

Technical Report : GLOSSARY

; program execution. Bringing an exception to attention is called raising the
exception.

Exception Handler -- An exception handler is a section of program text
specifying a response to the exception.

Expander/Optimizer -- The expander/optimizer is the component of the Ada
Optimizing Compiler which performs the expanding and optimizing functions
within one pass. See also Back End.

Expression -- An expression is a part of a program that computes a value.

Executive Program -- The Executive Program is the component of the Ada
? Software Environment that provides the interface between a wuser and the
y program invoked from the user's terminal. The Executive includes the user's
* terminal interface and the Command Language Interpreter.

i Front End -- The front end of the Ada Optimizing Compiler is a language
£ translator which accepts the Ada source text for a compilation unit,
f performs lexical analysis, checks the syntax and static semantics of the
1 compilation unit, and produces the intermediate representation (DIANA) of
the compilation unit.

Garbage Collection -- Garbage Collection is a memory management technique
that attempts to reclaim allocated memory space as soon as it is no longer
designated by any variable.

Generic Clause -- See Generic program unit.

Generic Program Unit -- A generic program unit is a subprogram or package
{ specified with a generic clause. A generic clause contains the declaration
] of generic parameters. A generic program unit may be thought of as a
possibly parameterized model of program units. Instances (that is, filled-

in copies) of the model can be obtained by generic instantiation. Such
instantiated program units define subprograms and packages that can be used
directly in a program.

o s

Generic Expansion -- Generic expansion is the replacement of generic formal .
parameters in the Intermediate Language template for the generic declaration |
with the actual parameters. ;

- i
Generic Instantiation -- Generic instantiation is the substitution of the

actual parameters for the generic formal parameters in a copy of the generic i
dynamic specification.

| Generic Optimization -- Generic optimization is accomplished by sharing code
i between different instantiations of a generic definition.

Global Package Handier -- The Global Package Handlier is an Ada Execution ‘
Environment routine which determines the locations of visible parts of
packages global to the program. {

Global Package Table -- The Global Package Table is a table containing the

Texas Instruments A-6 Ada Integrated Environment

Technical Report GLOSSARY
locations of visible parts of packages global to the program.

Heap -- A heap is an area of memory reserved for dynamic variables. In Ada,
dynamic variables are of the access type and are created by an Allocator.

Host Computer -- A host computer is a computer which supports a software
development effort. It is expected to provide a general-purpose operating

system with file management, resource management, scheduling, and other run-
time support for all user programs.

Image Binding -- Image binding is a method of program binding by which the
bound program is stored on disk in exactly the form it will have when loaded
in memory; for example, the program contains all the inter-segment reference

tables that will be needed at execution time.

Information Hiding -- Information hiding is the restriction of the
visibility of an object or process to protect it from external influence.

This function is handled in Ada by the private type.

Indexed Component -- See Component.

Interface -- An interface is a common design that allows communication
between programs, tasks or data structures. See also KAPSE Virtual
Interface.

Intermediate Language -- An Intermediate Language is a translation of the

Abstract Syntax Tree generated by the Analyzer. This translation is usually
machine-independent and may be further translated to object code.

lgg_érrup_t_ -- An interrupt is a response to an asynchronous or exceptional
event that automatically saves the current CPU status (to allow later
resumption) and causes an automatic transfer to a specified routine (called

an interrupt handler).

Kernel Ada Programming Support Environment -- The Kernel Ada Programming
Support Environment (KAPSE) provides the database, communication, and run-
time support functions that enable the execution of an Ada program; these

functions are a "kernel” in the sense that they provide a machine and
operating system independent interface whose implementation on a host system
uffices to install the Ada Integrated Environment. This interface s

called the KAPSE Virtual Interface.

KAPSE Interface Task -- The KAPSE Interface Task (KIT) provides for
interaction among the various components of the Ada Software Environment.

KAPSE Virtual Interface -- See Kernel Ada Programming Support Environment.

Lexical Descendents -- Lexical descendents are the subprograms that are
nested within a parent subprogram.

Lexical Unit -- A lexical unit is one of the basic syntactic elements making
up a program. A Jexical unit is an identifier, a number, a character
literai, a string, a delimiter, or a comment.

Texas Instruments A-7 Ada Integrated Environment

o S— .
T T — ;#:‘

LY

Technical Report GLOSSARY

Library -- See Program Library.

Library File -- A library file is a separate database for maintaining the
compilation state of a program or family of programs.

Library Unit -- A library unit is a compilation unit that is not a subunit
of another compilation unit.

Literal -- A literal denotes an explicit value of a given type, for example
a number, an enumeration value, a character, or a string.

Load-And-Go -- lLoad-And-Go is a method of program binding such that the
resuftant bound program is in a form ready for immediate execution.

Machine-Dependent Optimization -- Machine-dependent optimization includes
optimizations performed on a program that are dependent on the target
machine.

Machine-Independent Optimization -- Machine-independent optimization
includes optimizations performed on a program that are language and target
machine independent. Basically, they represent source-to-source

transformations.

Main Program -- The main program of an Ada system is a designated subprogram
which acts as a driver to the remainder of the package.

Minimal Ada Programming Support Environment -- The Minimal Ada Programming
Support Environment (MAPSE) includes the compiler, text editor, debugger,
terminal interface routines, project/ configuration control functions, and

program binder.

Model Number -- A model number is an exactly representable vaue of a real
numeric type. Operations of a real type are defined is terms of operations
on the model numbers of the type. The properties of the model numbers and
of the operations are the minimal properties preserved by all
implementations of the real type.

Name -- A name denotes a declared entity, a result returned by a function
call, or a label, block name, or loop name.

Named Association -- Named association indicates the value of an object by
pecifying its identifier. See also Positional association.

Object -- Within the database, an object is a separately identifiable
collection of information. Within an Ada program, an object can denote any
kind of data element, whether a scalar value, a composite value, or a value
in an access type.

Optimizer -- An optimizer is a tool used to analyze and transform a program
unit to improve its performance or its utilization of computing resources.

0S8/32 -- The 0S/32 is the operating system of the Perkin-Elmer (Interdata)
8/32 computer.

Ada Integrated Environment

Texas Instruments A-8

NPT

Technical Report GLOSSARY

Overlay -- An overlay is a portion of a program that resides on disk until
it is referenced, at which time it is loaded into memory. Program Binder --
commands are provided to partition a program into overlays and to specify
which overlays will share logical memory.

Overloading -- Overloading is the property that literals, identifiers, and
operators can have several alternative meanings within the same scope. For
example, an overloaded enumeration literal is a literal appearing in two or
more enumeration types; an overloaded subprogram is a subprogram whose
designator can denote one of several subprograms depending upon its
parameter types and returned value.

Package -- A package is a program unit specifying a collection of related
entities such as constants, variables, types and subprograms. The visible

part of a package contains the entities that may be used from outside the
package. The private part of a package contains structural details that are
irrelevant to the use of the package but that complete the specification of
the visible entities. The body of a package contains implementations of
subprograms or tasks (possibly other packages) specified in the \visible
part.

Parameter -- A parameter is one of the named entities associated with a
subprogram, entry, or generic program unit. a formal parameter is an
identifier used to denote the named entity in the unit body. An actual
parameter is the particular entity associated with the corresponding for.nal
parameter in a subprogram call, entry call, or generic instantiation. The
parameter mode specifies whether the parameter is to be passed into and/or
returned by the program unit. A positional parameter is an actual parameter
passed in positional order. A named parameter is an actual parameter passed
by naming the corresponding formal parameter.

Parser -- A parser is a phase of a compiler that considers the context of
each token returned by the syntax analyzer and classifies groups of tokens
into larger entities such as declarations, statements and control

structures; also referred to as lexical analyzer.

Partial Binding -- Partial binding is a technique of segment binding which
allows the building of a program segment in multiple phases.

Pathname -- A pathname is a sequence of Ada identifiers that specifies the
unique path through the directory hierarchy from the base or root to the
specified object.

Positional Association -- Positional association specifies the value of an
object based on its positional order. See also Named association.

Pragma -- A pragma is an instruction to the compiler, and may be language
defined or implementation defined.

Primitives -- Primitives are functions which are accomplished directly by

the Command Language Interpreter. They are indicated by the prefix "SYS."
in the procedure name.

Texas Instruments A-9 Ada Integrated Environment

Ciads b tiass
PO}

Technical Report GLOSSARY

3 Private Type -- A private type is a type whose structure and set of values
] are clearly defined, but not known to the user of the type. A private type
, is known only by its discriminants and by the set of operations defined for
3 it. A private type and its applicable operations are defined in the visible
part of a package. Assignment and comparison for equality or inequality are
?Iso éiefined for private types, unless the private type is marked as
imited.

Program Binder -- The program binder is a tool used to form a complete
program from specified constituent program units. The binding process may
] merge program units from several libraries to create the desired program.

9 Program Library -- A program library is a collection of the compilation
3 units of a program.

Program Parameter Area -- The Program Parameter Area (PPA) is an associative
storage area used for passing parameters between program units.

Program Parameter Descriptor -- The program parameter descriptor is a block
containing a list .of parameter names and types required by the program. The
program manager uses this information to obtain the parameter values from]
the user and pass them to a program.

Program Segment -- The subprograms that comprise an Ada program may be
partitioned (by the program binder) into collections called segments.
Intra-segment references are resolved, and inter-segment references are made
through taktles that facilitaie sharing of code. A program segment consists
of a Code Section, a Code Section Dictionary, a Constant Section and a
Constant Section Dictionary.

Program Unit -- A program unit is the basic units of which programs may be
composed. Units may be subprograms, packages, or tasks.

Qualified Expression -- A qualified expression is an expression qualified by
the name of a type or subtype. For example, it can be used to state the
type or subtype of an expression for an overloaded literal.

Raising An Exception -- See Exception.

Range -- A range is a contiguous set of values of a scalar type. A range is
specified by giving the lower and upper bounds for the values.

Range Constraint -- See Constraint.

Record Aggregate -- See Aggregate.

Record Type -- A record type is a collection of similar or dissimilar
components.
Rehost -- To rehost is to transport and adapt software from one host system
to another.
Relation -- A relation is a labeled, directed arc that connects any two
Texas Instruments A-10 Ada Integrated Environment

o ,'

Technical Report GLOSSARY

database objects.

Relative -+ A relative is a database object associated with another database
object through a relation.

Retarget -- To retarget is to adapt software which was designed to execute
on a given target computer to run on another target machine.

Rendezvous -- A rendezvous is the interaction that occurs between two
parallel tasks when one task has called an entry of the other task, and a
corresponding accept statement is being executed by the other task on behalf
of the calling task.

Representation Specification -- A representation specification defines the
mapping between a data type and its implementation on the underlying
machine. In some cases, it completely specifies the mapping, in other

cases, it provides criteria for choosing a mapping.

Scalar Type -- A scalar type indicates an ordered set of values by
enumerating the identifiers which denote the values. Scalar types comprise
discrete types (that is, enumeration and integer types) and real types.

Scope -- The scope of a declaration is the region of text over which the
declaration has an effect. :

Segmentation -- Segmentation is the technique for managing segments in
memory. A segment is a logical grouping of information, such as a

subprogram. A Segment Table indicates the address of each segment in
memory .

Selected Component -- See Component.

Semaphore -- A semaphore is an abstraction operated on by synchronization
primitives to coordinate concurrent access to a resource,

Slice -- A slice is a one-dimensional array denoting a sequence of
consecutive compenents of a one-dimensional array.

Stack -- A stack is a sequence of memory locations in which data may be
stored or retrieved on a last-in-first-out (LIFO) basis. Storage for a task
is allocated in a structure called a stack region, which is subdivided into
stack frames. These stack frames are allocated on a LIFO basis as control
enters and exits subprograms.

Static Expression -- A static expression is one whose value does not depend
on any dynamically computed values of variables.

Subprograms -- A subprogram is an executable program unit, possibly with
parameters for communication between the subprogram and its point of call.
A subprogram deciaration specifies the name of the subprogram and its
parameters; a subprogram body specifies its execution. A subprogram may be
a g'rocedure, which performs an action, or a function, which returns a
result.

Texas Instruments A-11 Ada Integrated Environment

Technical Report GLOSSARY

Subtype -- A subtype of a type is obtained from the type by constraining the
set of possible values of the type. The operations over a subtype are the
same as those of the type from which the subtype is obtained.

Subunit -- A subunit is a body of a subprogram, package or task declared in
the outermost declaration part of another compilation unit) which may be
compiled separately. .

Symbol Table -- A symbol table is a table built by a compiler which contains
the characteristics of the identifiers used in the program.

Target Computer -- A target computer is the machine on which the specified
software is designed to execute.

Task -- A task is a program unit that may operate in parallel with other
program units. A task specification establishes the name of the task and
the names and parameters of its entries; a task body defines its execution.
A task type is a specification that permits the subsequent declaration of
any number of similar tasks.

Text Editor -- A text editor is a tool used to form program units from
smaller constituent parts. The editing process may include direct text
entry, deletion or changes by an interactive user, or may merge text from
several source files to create the desired program unit.

Type -- A type defines the structure of a data element (enumeration,
integer, real, array, record, or access), the values which the element may
assume, and the operations which may be performed on the element. A type
definition is a language construct introducing a type. A type declaration
associates a name with a type introduced by a type definition.

Use Clause -- A use clause opens the visibility to declarations given in the
visible part of a package.

Variant -- A variant part of a record specifies alternative record
components, depending on a discriminant of the record. Each value of the
discriminant establishes a particular alternative of the variant part.

Virtual Machine -- A computer architecture is said to support a virtual
machine if it permits multiple instances of the architecture to be simulated
on a single processor. Each wuser is given the full capabilities of the
processor.

Virtual Terminal -- A virtual terminal is a logical terminal to which the

input/output of an executing program may be directed; a virtual terminal may
be connected to an actual terminal through a command to the Executive
Program. ,

Visibility -- The declaration of an entity with a certain identifier is said
to be visible at a given point in the text when an occurrence of the
identifier at this point can refer to the entity, that is, when the entity
is an acceptable meaning for this occurrence.

Texas Instruments A-12 Ada Integrated Environment

atasid

=3 N Ty . - 5 A it et o Pablank o s 0l DM Il DL 5 TGS 530 Vi, i e A vt AN

IO oo ot e A - .
Technical Report GLOSSARY
VM/370 -- The WVM/370 (Virtual Machine /370) is an operating system of the

1 1BM/370 computer that supports virtual machines.

Window -- A window is a portion of a physical terminal which may be
connected to a virtual terminal. In peephole optimization, a window is the
sequence of instructions being viewed.

With Clause -- A with clause is used to create an implicit declaration of
the named library units.

antiliGanianih

po/ g vy

A-13

Technical Report REFERENCES

APPENDIX B
REFERENCES
[
B.1 Program Definition Documents

[DoD80A] Requirements for Ada Programming Support Environments:
STONEMAN, DoD (February 1980).

[RADCS80]) Revised Statement of Work for Ada Integrated Environments, RADC,
Griffiss Air Force Base, NY (March 1980).

[SOFT80A] Ada Compiler Validation Carability: fong Range Plan, SofTech
Inc., Waltham, MA (February 1930).

[SOFT80B] Draft Ada Compiler Validation lmplementers' Guide, SofTech Inc.,
Waltham, MA (October 1980).

B.2 Military Specifications and Standards

[DoD80B] Reference Manual for the Ada Programming Language: Proposed
Standard Document, DoD (July 1980) (reprinted November 1980).

B.3 Other References

[AHO77] Aho, A.V. and J. D. Ullman, Principles of Compiler Design,
Addison-Wesley Publishing Co., Reading Ma., (1977).

[ALL76] Allen, F.E., A Program Data Flow Analysis Procedure, CACM 19, 3
(March 1976), 137-147. .

[APP79] Applewhite, C.M.,Distributed Computer Architecture for the
Discrete Address Beacon System, Proceedings of 1st International

Conference on Distributed Computing Systems, Huntsville,
Alabama, (October 1979).

[BAKS80] Baker, Henry G. Jr., List Processing in Real Time on a Serial
Computer, CACM 21, 4 (April 1978), 280-294.

[BARSO] Barnes, J.G.P., An Overview of Ada, Software-Practice and
Experience, 10 (November 1980), 851-887.

[BAR79] Barrett, W.A. and J.D. Couch, Compiler Construction: Theory

Texas Instruments B-1 Ada Integrated Environment

L TR N W R T

ST TRy e

~——d —Z _*a

Technical Report REFERENCES

[BAT76)

[BAT79]

[BEL8O]

[BOE76]

[BOHS6]

(BOO80]

[BOUSO]

(BRAS0]

[BRES8O]

[BROSOA]

(BROSOB]

(BURTT]

(BUX80]

[CARS0]

(CATT7]

[CATT8]

and Practice, SRA (1979).

Bates, D. (editor), Program Optimization, Infotech State of the
Art Report, Infotech International Limited (1976).

Bate, R.R. and D.S. Johnson, Putting Pascal to Work,
Electronics, 7 (June 1979), 111-121,

Belmont, P.A., Type Resolution in Ada: An Implementation
Report, SIGPLAN Notices, 15, 11 (November 1980), 57-61.

Boehm, B.W., Software Engineering, |EEE Transactions on
Computers, C-25, 12 (December 1976), 1226-41.

Bohm, C. and G. Jacopini, Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules, CACM, 9, 5 (May 1966),
366-71.

Booch, Lt. E.G., ADA Tutorial, U.S. Air Force Academy, (Fall
1980) .

Boute, R.T., Si.mplifying Ada by Removing Limitations, SIGPLAN
Notices, 15, 2 (February 1980), 17-29.

Bradshaw, F.T., et.al., Procedure Semantics and Language
Definition, SIGPLAN Notices, 15, 6 (June 1980), 28-33.

Brender, R., The Case Against Ada as an APSE Command Language,
SIGPLAN Notices, (Oct 1980), 27-32.

Brosgol, B.M., et.al., TCOL Ada: Revised Report on an
Intermediate Representation for the Preliminary Ada Language,
Department of Computer Science, Carnegie-Mellon University
(February 1980).

Brosgol, B.M., TCOL-Ada and the "Middle End" of the PQCC Ada
Compiler, SIGPLAN Notices, 15, 11 (November 1980), 101-112.

Burroughs Corporation, B7000/86000 Series 1/0 Subsystem
Reference Manual, Number 5001779, (September 1977).

Buxton, J.N., L.E. Druffel and V. Stenning, Rationale for
STONEMAN, Proc. COMSAC, Chicaco, October 1980.

Carison, W.E., Ada: A Standard Programming Language for Defense
Systems, SIGNAL, (March 1980), 25-28.

Cattell, R.G., A Survey and Critique of Some Models of Code
Generation, Department of Computer Science, Carnegie-Mellon
University (November 1977).

Cattefl, R.G., Formalization and Automatic Derivation of Code
Generation, PhD Thesis, Carnegie-Mellon University (April 1978).

Texas Instruments B-2 Ada Integrated Environment

[- ————

Technical Report : REFERENCES

[CATT79] Cattell, R.G., et. al., Code Generation in a Machine- ‘
Independent Compiler, SIGPLAN Notices, 14, 8 (August 1979), 65- !

75.
i

[CAT80] Cattell, R.R., Automatic Derivation of Code Generators from
Machine Descriptions, ACM Transactions on Programming Languages
and Systems, 2, 2 (April 1980), 173-190.)

[CHAT79] Champine, G.A., Current Trends in Data Base Systems, Computer,
12, 5 (May 1979), 27-41.

[c1180] Cil Honeywell Bull, Formal Definition of the Ada Programming
Language, Louveciennes, France (November 1980).

[CcOD70] Codd, E.F., A Relational Model of Data for Large Shared Data
Banks, CACM, 13, 6 (June 1970).

[CODT71] Codd, E.F., Normalized Data Base Structure: A Brief Tutorial,
Proceedings 1971 ACM SIGFIDET Workshop on Data Description,
Access and Control (1971).

fcoD71B] Codd, E.F., A Data Base Sublanguage Founded on the Relational
Calculus, Proceedings 1971 ACM SIGFIDET Workshop on Data
Description, Access and Control (1971).

[CODT2A] Codd, E.F., Relational Completeness of Data Sublanguages, in
Data Base Systems, Courant Computer Science Symposia Series,
Vol. 6, Prentice-Hall (1972).

[COD72B] Codd, E.F., Further Normalization of the Data Base Relational
Model, in Data Base Systems, Courant Computer Science Symposia
Series, Vol. 6, Prentice-Hall, (1972).

[COD74] Codd, E.F., Recent Investigations in Relational Data Base
Systems, Proceedings IFIP Congress, (1974).

[cOoMT79] Comer, Doug, The Ubiquitous B-Tree, Computing Surveys, (1979).

- [CO079] Cooprider, L.S., The Representation of Families of Software
' Systems, Carnegie-Mellon University PhD thesis (1979).

[CORS80] Cornhill and Gordon, ADA - The Latest Word in Process Control,
Electronic Design, (1 September 1980), 111-116.

[DAT71] Date, C.J. and P. Hopewell, Storage Structure and Physical
Data Independence, Proc. 1971 ACM SIGFIDET Workshop on Data
Description, Access and Control, (1971).

[DAT75) Date, C.J., Relational Database Systems: A Tutorial, Proc. 4th
International Symposium on Computers and Information Science,
Plenum Publishing Corp., (1975).

Gt - momd)

[DAT75-77] Date, C.J., An Introduction to Database Systems, Addison-Wesley

Texas Instruments B-3 Ada Integrated Environment

Technical Report REFERENCES

[DAUT9A]

[DAUT9B]

[DAUT9C]

[DAUBOA]

[DAUB0B]

[DAUSOC]

[DAUSOD]

[DAUBOE]

[DAUSOF]

[DAVS0]

(DED80]

[DEMS0]

[DER76]

[DERSO]

[DEVS0]

Publishing Co., Reading, Ma., (1975-1977).

Dausmann, M., et. al., Notes on TCOL, Universitat Karlsruhe,
West Germany (October 1979).

Dausmann, M., et. al., AIDA: An Intermediate Representation of
Ada Programs - Global Design, Universitat Karlsruhe, West
Germany (November 1979).

Dausmann, M., et. al., AIDA: An Intermediate Representation of
Ada Programs, Universitat Karlsruhe, West Germany (November
1979).

Dausmann, M., et. al., AIDA: An Informal Introduction,
Universitat Karlsruhe, West Germany (February 1980).

Dausmann, M., et. al., AIDA: Reference Manual (Preliminary
Draft), Universitat Karlsruhe, West Germany (February 1980).

Dausmann, M., et. al., Command Interpreter of the Library-User-
System (User Information), Universitat Karlsruhe, West Germany
(July 1980).

Dausmann, M., et. al., AIDA: An Informal Introduction (Draft),
Universitat Karlsruhe, West Germany (November 1980).

Dausmann, M., et. al., AIDA: Reference Manual (Draft),
Universitat Karisruhe, West Germany (November 1980).

Dausmann, M., et. al., SEPAREE: A Separate Compilation System
for Ada (Draft), Universitat Karlsruhe, West Germany (November
1980) .

Davidson, J.W. and C. W. Fraser, The Design and Application
of a Retargetable Peephole Optimizer, ACM Transactions on
Programming Languages and Systems, 2, 2 (April 1980), 191-202.

Dedourek, J.M. and U. G. Gujar, Scanner Design, Software-
Practice and Experience, 10 (December 1980), 959-972.

Demarco, T., The Ada-Pascal Schism, Yourdon Report, (October
1980) .

DeRemer, F. and H.H. Kron, Programming-in-the-large versus
Programming-in-the-small, |IEEE Trans. Soft Eng., June 1976.

DeRemer, F., T. Pennello, and R. Meyers, A Syntax Diagram for]
(Preliminary) Ada, SIGPLAN Notices, 15,7/8, (July-August, 1980),
36-47.

Devlin, M., Preliminary ADA Introduction Plan for the Air Force
Satellite Control Facility Data System Modernization Program,
(January 1980).

Texas Instruments B-4 Ada Integrated Environment

Technical Report REFERENCES

[D1J65] Dijkstra, E., Programming Considered as a Human Activity,
Proceedings of the 1965 IFIP Congress, North-Holland Publishing
Co., (1965).

[D1J68] Dijkstra, E., Co-operating Sequential Process, in Programming
Languages (ed. F. Genuys), Academic Press, New York, (1968).

[DON72] Donovan, J.J., Systems Programming, McGraw-Hill Book Co.
(1972).

[EVAS80] Evans, Arthur Jr., Slides on Tasking in Ada, Ada Implementors
Newsletter, (September 1980).

[EVES80] Eventoff, W., D. Harvey, and R. J. Rice, The Rendezvous and
Monitor Concepts: |Is There an Efficiency Difference? SIGPLAN
Notices 15, 11 (November 1980), 156-165.

[FA180] Faiman, R.N. and A.A. Kortesoja, An Optimizing Pascal
Compiler, |EEE Transactions on Software Engineering, Vol. SE-6,
No. 6 (November 1980), 512-518.

[FIR80A] Firth, R., Presenting Revised Ada, Presentation at NCC 80.

[FIRB0B] Firth, R., Universal Ada Language Issue Report Construction Kit,
SIGPLAN Notices, 15, 5 (May 1980), 35-36.

[FI1S78]) Fisher, C.A. and P.R. Wetherall, STEELMAN, Department of
Defense Requirements for High Order Computer Programming
Languages, HOLWG, (June 1978).

[F1S79] Fisher, D.A. and T.A. Standish, Initial Thoughts on the
Pebbleman Process, IDA Paper P-1392, (June 1979).

[F1580] Fisher, D.A., Design Issues for Ada Program Support
Environments, a Catalogue of Issues, SAI-81-289-WA, (October
1980) .

[FRA79] Fraser, C.W., A Compact, Portable CRT-Based Text Editor,
Software-Practice and Experience, 9, Department of Computer
Science, University of Arizona, (1979), 121-125.

[FRA80] Fraser, C.W., A Generalized Text Editor, CACM, 23, 3 (March
1980), 154-158.

[GAL8O0] Galkowski, J.T., A Critique of the DOD Common Language Effort,
SIGPLAN Notices, 15, 6 (June 1980), 15-18.

[GANS8O] Ganzinger, H. and K. Ripken, Operator |dentification in Ada:
Formal Specification, Complexity, and Concrete Implementation,
SIGPLAN Notices, 15, 2 (February 1980), 30-42.

[GES72) Geschke, C.M., Global Program Optimization, PhD Thesis,
Department of Computer Science, Carnegie-Mellon University

Texas Instruments B-5 _ Ada Integrated Environment

ST ¥ e T

Technical Report

[GLAT78] Glasse., A.L., The Evolution of a Source Code Control System
Design, Proc. Software Quality Assurance Workshop, November
1978.

[GLAT79] Glass, Robert, From Pascal to Pebbleman and Beyond, Datamation,
(July 1979).

[GOO8B0A] Goodenough, J.B., Ada (July 1980) Syntax Cross Reference
Listing, SofTech, Inc.,48-56.

[GOO80B] Goos, G. and G. Winterstein, Towards a Compiler Front-End for
Ada, SIGPLAN Notices, 15, 11 (November 1980), 36-46.

[GRA79A] Graham, S.L., W.N. Joy, and O. Roubine, Hashed Symbol Tables
for lLanguages with Explicit Scope Control, Proceedings of the
SIGPLAN Symposium on Compiler Construction, SIGPLAN Notices, 14,
8 (August 1979) 50-57.

[GRA80] Graham, S.L., Table-Driven Code Generation, Computer (August
1980), 25-34.

[GRI71] Gries, D., Compiler Construction for Digital Computers, John
Wiley and Sons, Inc., New York, (1971).

[HABS8O] Habermann, A.N., and |I. Nassi, Efficient Implementation of Ada
Tasks, Carnegie-Mellon University Report CS-80-103, (February
1980) .

[HAL78] Hall, D., D. Scherrer, and J. Sventek, The Software Tools
Programmers Manual, Internal Rep. LBID097, LBL, University of
California, Berkeley, California, (1978).

[HALSO] Hall, D. et. al., A Virtual Operating System, CACM, 23, No.
9, (September 1980).

[HAR75] Harrison, W.H., A Class of Register Allocation Algorithms, |BM
Watson Research Center, Yorktown Heights, NY (March 1975).

[HART79] Harrison, W.H., A New Strategy for Code Generation-the General-
Purpose Optimizing Compiler, |EEE Transactions on Software
Engineering, Vol. SE-5, No. 4 (July 1979), 367-373.

[HART7T7] Hartmann, A.C., A Concurrent Pascal Compiler for Minicomputers,
Springer-Verlag, Berlin (1977).

[HECT7] Hecht, M.S., Flow Analysis of Computer Programs, American-
Elsevier, New York, NY (1977).

[H1S80] Hisgen, A. et. al., A Runtime Representatin for Ada Variables
and Types, SIGPLAN Notices, 15, 11 (November 1980), 82-90.

Texas Instruments B-6 Ada Integrated Environment

(October 1972).

REFERENCES

PRy Y e, o, ditats T o - i - - i —_—— -

TP T W M G et sermsg oy

Technical Report REFERENCES

[HOL79] HOLWG, Ada Environment Workshop, Harbor lIsland, San Diego,
(November 1979).

[HP 77] Hewlitt-Packard Company, HP3000 Series |l Computer System:
System Reference Manual, Santa Clara, California, (1977).

[18MT71] PL/t (F) Compiler Program Logic Manual, IBM Corporation, Order
No. GY28-6800-5 (December 1971).

[1BMT72A] FORTRAN IV (H) Compiler Program Logic Manual, IBM Corporation,
Order No. GH28-6642-5 (October 1972).

[1BM72B] IBM Corporation, System/360 Operating System System Generation,
iBM order no. GC28-6554-1, 1972.

3 [1BM76] IBM Corporation, IBM System/370 Principles of Operation, |IBM
1 order no. GA22-7000-5, (1976).

[18M77] IBM Corporation, Display Editing System for CMS Users Guide, IBM
order no. SH20-1965-0, (1977).

[1BM79A] IBM Corporation, VM/370 Publications, VM/370 Introduction, |BM
order no. GC20-1800, (1979).

[1BM79B] IBM Corporation, VM/370 Publications, VM/370 Terminal Users
Guide, IBM order no. GC20-1810, (1979).

[1BM79C] IBM Corporation, VM/370 Publications, VM/370 CP Command
Reference for General Users, |BM order no. GC20-1820, (1979).

[1BM73D] IBM Corporation, VM/370 Publications, VM/370 System Messages,
IBM order no. GC20-1808, (1979).

[1BM79E] IBM Corporation, VM/370 Publications, VM/370 Planning and System
Generation Guide, |IBM order no. GC20-1801, (1979).

[1BM79F] IBM Corporation, VM/370 Publications, VM/370 Operating Systems
in a Virtual Machine, IBM order no. GC20-1821, (1979).

[IBM79G] IBM Corporation, VYM/370 Publications, VM/370 System Programmers
3 Guide, 1BM order no. GC20-1807, (1979).

[IBM79H] 1BM Corporation, VM/370 Publications, VM/370 Release 6 Guide,
iBM order no. GC20-1834, (1979).

[1BM791] 1BM Corporation, VM/370 Publications, VM/370 Operators Guide,
IBM order no. GC20-1806, (1979).

§ ‘ [1BM79J] IBM Corporation, VM/370 Publications, VM/370 Quick Guide for
! Users, IBM order no. GC20-1926, (1979).

[IBM79K] IBM Corporation, IBM Virtual Machine Facility/370 Display
Management System for CMS: Guide and Reference, |BM order no.

Texas Instruments B-7 Ada Integrated Environment

‘!.
b
A

Technical Report REFERENCES

S$C24-5198-0, (1979).

[1BM79L] IBM Corporation, IBM Virtual Machine Facility/370: CMS User's
Guide, IBM Order no. GC20-1819-2, (1979).

[I1BM8OA] IBM Corporation, IBM Virtual Machine/System Product: System
Product Editor Command and Macro Reference, IBM order no. SC24-
5221-0, (1980).

[1BM80B] IBM Corporation, IBM Virtual Machine/System Product: System
Programmer's Guide, |BM Order no. SC19-6203-0, (1980).

[ICH79A] Ichbiah, J.D. et. al., Rationale for the Design of the Ada
Programming Language, SIGPLAN Notices, 14, 6 (June 1979), (AD A
071 761).

[1CH79B] ichbiah, J.D. et. al., Reference Manual for the ADA
Programming Language, SIGPLAN Notices 14, 6:A (June 1979), (AD A
071 761).

[INT80] Intermetrics, Inc and Carnegie-Mellon University, TCOL-Ada:
Revised Report on An Intermediate Representation for the
Preliminary Ada Language, Intermetrics Report |R-459, (February
1980) .

[I1RO72] lron, E.T. and F.M. Djorup, A CRT Editing System, CACM, 15, 1
(1972), 16-20.

[wVI77] lvie, E.L., Programmers Work Bench - A Machine for Software
Development, CACM 20, 10 (October 1977}, 746-753.

[JANSO] Janan, J.M., A Comment on Operator Identification in ADA,
SIGPLAN Notices, 15, 9 (September 1980), 39-43.

[JEN79A] Jensen, R.M., A Formal Approach for Communication Between
Logically Isolated Virtual Machines, IBM System Journal, 18, no.
1 (1979), 71-92.

[JEN79B] Jensen, R.M. and C.C. Tonies, Software Engineering, Prentice-
Hall, (1979).

[JOHT78] Johnson, D., C. Kolberg and J. Sinnamon, A Programmable System
for Software Configuration Management, Texas instruments, Inc.,
Dallas, Texas, (September, 1978).

[JOH80] Johnson, D. and J. Cointment, A Library Management System to
Support Ada Programming, Advanced Computer Systems Lab, Texas
Instruments, (May 1980).

[JOHT75] Johnsson, R.K., An Approach to Global Register Allocation, PhD

Thesis, Department of Computer Science, Carnegie-Mellon
University (December 1975).

Texas Instruments B-8 Ada Integrated Environment

Technical Report REFERENCES

[JON8O]

[KORS0]

[KNUT3A]

[KNU73B)

[LAMS0A]

[LAM80B]

[LAU79]

[LEB79]

[LED80]

[LEF69)

[LOVS0A]

[LOV80B]

[LOVEOC]

[MACT79]

[MACT77]

[MAD74]

Jones D.W., Tasking and Parameters: A Problem Area in Ada,
SIGPLAN Notices, 15, 5 (May 1980), 37-40.

Kornerup, P., et. al., Interpretation and Code Generation Based
on Intermediate Languages, Software Practice and Experience, 10,
8 (August 1980), 635-658.

Knuth, D., The Art of Computer Programming, Vol. 1, Fundamental
Algorithms, Addison-Wesley Publishing Co. (1973).

Knuth, D., The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley Publishing Co. (1973).

Lamb., David A., Construction of a Peephole Optimizer,

‘Department of Computer Science, Carnegie-Mellon University

(August 1980).

Lamb, David A., et.al., The Charrette Ada Compiler, Department
of Computer Science, Carnegie-Mellon University (October 1980).

Lauer, H.C. and E. Satterthwaite, The Impact of MESA on System
Design, Proc 4th International Conference on Software
Engineering, Munich, 1979.

LeBanc, R.J. and C.N. Fischer, On Implementing Separate
Compilation in Block-Structured Languages, SIGPLAN Notices, 14,
8 (August 1979), 139-143.

Ledgard, H., et.al., The Natural Language of Interactive
Systems, CACM, 23, 10 (October 1980).

Lefkovitz, D., File Structures for On-line Systems, Spartan
Books (1969).

Loveman, Ada Defines Reliability as a Basic Feature, Eiectronic
Design, (27 September 1980), 93-98.

Loveman, Ada Knack or Multitasking Benefits Process Control,
Electronic Design, (6 December 1980), 101-105.

Loveman, Subprograms and Types Boost Ada Versatility, Electronic
Design, (25 October 1980), 153-158.

MacKinnon, R.A., The Changing Virtua! Machine Environment:
Interfaces to Real Hardware, Virtual Hardware, and Other Virtual
Machines, |BM System Journal, 18, 1 (January 1979), 18-46.

Macleod, |.A., Design and Implementation of a Display Oriented
Text Editor, Software -- Practice and Experience, 7 (1977), 771-
778.

Madnick, S.E. and J.J. Donovan, Operating Systems, McGraw-Hill

Texas Instruments 8-9 Ada Integrated Environment

Technical Report . REFERENCES

Book Co., (1974).

[MAR77] Martin, J., Computer Database Organization, 2nd edition,
Prentice-Hall, (1977).

[MIN79] Mintz, R.J. et. al., The Design of a Global Optimizer, SIGPLAN
Notices, 14, 8 (August 1979), 226-234.

[MoD] United Kingdom Ministry of Defence, Ada Support System Study:
Phase 2 and 3 Reports.

[MOL79] Molina, F.W., A Practical Data Base Design Method, Data Base,
11, 1 (Summer 1979), 3-11.

[PALT75] Palermo, F.P., A Data Base Search Problem, Proc. 4th
International Symposium on Computers and Information Science,
Plenum Publishing Corporation (1975).

[PART76] Parnas, D.L., On the Design and Development of Program Families,
IEEE Trans. Soft Eng., March 1976.

[PEAT79] Pearson, D.J., The Use and Abuse of a Software Engineering
System, Proc. NCC 1979.

[PEM80] Pemberton, S., Comments on an Error-recovery Scheme by Hartmann,
Software-Practice and Experience, 10 (1980), 231-240.

[PEN8O] Pennello, T., F. DeRemer, and R. Meyers, A Simplified Operator
Identification Scheme for Ada, SIGPLAN Notices, 15, 788 (July-
August 1980), 82-87.

[PERT78] Perkin-Elmer Corporation, M83-Series Models 8/32, 8/32C, and
8/32D Processors User Manual, Publication Number 29-428R06,

Computer Systems Division, Perkin-Elmer Corporation, Oceanport,
N. J., (1978).

[PERT79] Perkin-Elmer Corporation, 0S/32 Programmer Reference Manual,
Publication Number $29-613R04, Computer Systems Division,
Perkin-Elmer Corporation, Oceanport, N. J., (1979).

[PERS80] Persch, G. et. al., Overloading in Preliminary Ada, SIGPLAN
Notices, 15,11 (November 1980), 47-56.

'RADC74] IBM Corporation, Programming Support Library Functional
Requirements, Structured Programming Series (RADC TR 74-300), 5,
(1974), (AD A 003 339).

[RADC80] Martin Marietta Aerospace Corporation, Recommendations for a
Retargetable Compiler, Final Technical Report (RADC TR-79-351),
(March 1980).

[ROCT75] Rochkind, M.J., The Source Code Control System, IEEE
Transactions on Software Engineering, SE-1, 4 (December 1975),

Texas Instruments B-10 Ada Integrated Environment

Technical Report REFERENCES

[ROS80]

[ROS77]

[RUD79])

[SCH73)

[SCHT7]

[SCHT79]

[SCH80A]

[SCH80B]

[SEAT9)

[SHA80]

[SHEB0A]

(SHES0B]

(SIT79A]

[S1T798)

[SMABS0]

346-349.

Rosenberg, J. et. al., The Charrette Ada Compiler SIGPLAN
Notices, 15, 11 (November 1980), 72-81.

Ross, D.T. and K.E. Schoman, Structured Anpnalysis for
Requirements Definitions, |EEE Transactions on Software
Engineering, SE-3, 1 (January 1977), 6-15.

Rudmik, A. and E.S. Lee, Compiler Design for Efficient Code
Generation and Program Optimization, SIGPLAN Notices, 14, 8
(August 1979), 127-138.

Schaefer, M., A Mathematical Theory of Global Program
Optimization, Prentice-Hall, Inc., New York, NY (1973).

Scheifler, R.W., An Analysis of Inline Substitution for a
Structured Programming Language, CACM 20,9 (September 1977),
647-654.

Scherrer, D., Cookbook, Instructions for Implementing the LBL
Software Tools Package, Internal Rep. LBID 098, Lawrence
Berkeley Laboratory, University of California, Berekeley,
California, (1979).

Scheer, L.S. and M.G. McCleens, DODs Ada Compared to Present
Military Standard Holds A Look at New Capatilities, Engineering
Experimentation, Georgia Institute of Technology.

Schofield, D. et.al., MM/1, A Man-Machine Interface, Software
Practice and Experience, 10, (1980), 751-763.

Seawright, L.H., and R.A. MacKinnon, VM/370-A Study of
Multiplicity and Usefulness, [IBM System Journal, 18, No. 1,
(1979), 4-17.

Shankar, K.S., Data Structures, Types, and Abstractions,
Computer, 13, 4 (April 1980), 67-77.

Sherman, M.S. and M.S. Borkan, A Flexible Semantic Analyzer
for Ada, SIGPLAN Notices, 15, 11 (November 1980), 62-71.

Sherman, M. et. al., An Ada Code Generator for VAX 11/780 with
Unix, SIGPLAN Notices, 15, 11 (November 1980), 91-100.

Sites, R.L., Machine-Independent Register Allocation, SIGPLAN
Notices, 14, 8 (August 1979), 221-225.

Sites, R.L. and D.R. Perkins, Universal P-Code Definition,
Version 0.3, Department of Electrical Engineering and Computer
Sciences, University of California at San Diego (July 1979).

Smart, R., Pointers to Local Variables, SIGPLAN Notices, 15, 7/8

Texas Instruments 8-11 Ada integrated Environment

1.5.‘ —

B . - —Z

Technical Report REFERENCES

(July-August 1980), 88-89.

[STAT78] Standish, T.A., Proceedings of Workshop on Environment,
Certification and Control of DoD Common High Order Language,
University of California - lrvine, (June 1978).

[STAB80] Stallman, R.M., EMACS Manual for TOPS-20 Users, Al Memo 554, MIT
Artificial Intelligence Laboratory, (1980).

[STE75] Steele, Guy L. Jr., Multiprocessing Compactifying Garbage
Collection, CACM 18, 9 (September 1975), 495-508.

[STET79) Stenning, Vic, et. al., Ada Support System Study --
Requirements and Functions Specification, SDL and SSL, (March

1979).

[TA180] Tai, Kuo-Chung and K. Garrard, Comments on the Suggested
Implementation of Tasking Facilities in the "Rationale for the
Design of the ADA Programming Language", SIGPLAN Notices, 15, 10
(October 1980), 76-84.

[TAUT9] Tausworthe, R.C., Standardized Development of Computer Software,
Prentice-Hall, Inc., (1979).

[TEO80] Teory, T.J. and J.P. Fry, The Logical Record Access Approach
to Database Design, Computing Surveys, 12, 2 (June 1980), 179-
211.

[T1 78A] Texas Instruments Incorporated, Model 990 Computer TI Pascal
Users Manual, Tl Manual No. 946290-9701, (May 1978).

[TI1 78B] Texas Instruments Incorporated, Model 990 Computer DX10
Operating System Release 3 Reference Manual, Volume 1V,
Developmental Operation, T{ Manual No. 946250-9704, (1978).

(Tt 79A] Texas Instruments Incorporated, TI! Pascal Configuration
Processor Tutorial, Tl Manual No. 2250098-9701, (January 1979).

[Tt 80A] Texas Instruments Incorporated, TIFORM Reference Manual, TI
Manual no. 2250374-9701, (1980).

[T1 80B] Texas Instruments Proposal to Design and Develop from ADA
Language Environments, Vol 1 Computer Program Development Plan
(June 1980)

[T) 81A] Texas Instruments Incorporated, Design of the Ada Integrated
Environment, Equipment Group, Texas Instruments Incorporated,
Lewisville, Texas, (1981).

[Ty 818] Texas Instruments Incorporated, Device Independent File /0
User's Manual, MP386, Semiconductor Group, Texas Instruments
Incorporated, Houston, Texas, (1981). ‘

Texas Instruments B-12 Ada Integrated Environment

" . — " o b N - - - P

Technical Report REFERENCES

[T 81C]) Texas Instruments Incorporated, Microprocessor Pascal Executive
User's Manual, MP385, Semiconductor Group, Texas Instruments
Incorporated, Houston, Texas, (1981).

[T 81D] Texas Instruments Incorporated, Microprocessor Pascal System
User's Manual, MP351 (Revision B), Semiconductor Group, Texas
Instruments incorporated, Houston, Texas, (1981).

[TICT79] Tichy, W.F., Software Development Based on Module 1
Interconnection, Proc. 4th International Conference Software
Engineering, Munich 1979.

[UNIX78A] Ritchie, D.M. and K. Thompson, The UNIX Time-sharing System,
Bell System Technical Journal 57, 6, (July 1978). 1

[UNIX78B] Thompson, K., UNIX Implementation, Bell System Technical Journal
57, 6 (July 1978).

[UNIX78C] Bourne, S.R., The UNIX Shell, Bell System Technical Journal 57,
6 (July 1978).

[UNIX78D] Johnson, S.C., and D.M. Ritchie, Portability of C Programs and
the UNIX System, Bell System Technical Journal 57, 6 (July
1978).

[UNIX78E] Ritchie, D.M., A Retrospective, Bell System Technical Journal
57, 6 (July 1978).

[VDB80] van den Bos, Jan, Comments on ADA Process Communication, SIGPLAN
Notices, 15, 6 (June 1980), 77-81.

[WADT76] Wadler, Philip L., Analysis of an Algorithm for Real-Time 3
Garbage Collection, CACM 19, 9 (September 1976), 491-500.

[WART79] warren, Scott K., and Dennis Abbe, Rosetta Smalltalk: A
Conversational, Extensible Microcomputer Language, SIGSMALL 1
Newsletter, 5, 2 (April 1979), 36-45.

[WEL78] Welsh, J., Economic Range Checks in Pascal, Software-Practice
and Experience, 8 (1978), 85-97.

[WEG8B0A] Wegner, Peter, Programming with. Ada: an Introduction by means
of Gr)'aduated Examples, Prentice Hall, Englewood Cliffs, NJ,
(1980).

[WEGS80B]) Wegner, Peter, Conference Report: Seventh Annual ACM Symposium
on the Principles of Programming Languages, SIGPLAN Notices, 15,
5 (May 1980), 66-77. ;

[WIR76] Wir|t'h,(N9.7,6)Al_gorithms + Data Structures = Programs, Prentice
Hall, (1 .

[WUL75) Wulf, W.A., et.al., The Design of an Optimizing Compiler,

Texas Instruments B-13 Ada Integrated Environment

" . . ot G - FicsaaBal
T RO IR NIk o5t DUt L NI it P PO o S S S A i W o DS S i e = - A -

Technical Report REFERENCES

[wuL79]

[WUL80A]

[(wuL80B]

American-Elsevier, New York, NY (1975).

Wulf, W.A., et.al., An Overview of the Production Quality
Compiler-Compiler Project, Department of Computer Science,
Carnegie-Mellon University, (February 1979).

Wulf, W.A., et. al., An Overview of the Production-Quality
Compiler-Compiler Project, Computer (August 1980) 38-49.

Wulf, W.A., PQCC: A Machine-Relative Compiler Technology,
Department of Computer Science, Carnegie-Mellon University
(September 1980).

Texas Instruments B-14 Ada Integrated Environment

MISSION
of
Rome Awr Development Center

RADC plans and executes nesdearch, development, test and

selected acquisition proghams in suppont of Command, Contrnol
Communications and Intelligence (C31) activities. Technical
and engineening suppont within aneas of technical competence

L8 provided to ESP Program Offices (POs) and other ESD A
efements. The principal technical mission areas ane
communications, electhomagnetic guidance and conthol, sun- 0,

vedllance of ground and aerospace obfects, Antelligence data
collection and handling, ingormation system technology,
ALonosphernic propagation, solid state sclences, microwave
physics and electnonic neliability, maintainability and
compatibility.

3
3

k, NP

